Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (3): 101-114.DOI: 10.3969/j.issn.1001-909X.2023.03.010
GONG Fang1,2,3(), ZHU Bozhong1,2,4, LI Teng1,2, WANG Yuxin1,2, LI Hongzhe1,2,5, HE Xianqiang1,2,3,*(), ZHANG Qing1,2
Received:
2022-09-30
Revised:
2023-02-17
Online:
2023-09-15
Published:
2023-10-24
CLC Number:
GONG Fang, ZHU Bozhong, LI Teng, WANG Yuxin, LI Hongzhe, HE Xianqiang, ZHANG Qing. Remote sensing research on temporal and spatial variations of ecological environments and response for Tonga volcanic eruptions in South Pacific island countries[J]. Journal of Marine Sciences, 2023, 41(3): 101-114.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.03.010
序号 | 要素 | 选用数据时期 | 空间分 辨率/km | 卫星源 |
---|---|---|---|---|
1 | 海表温度 | 1997—2018年 | 1 | MODIS |
2 | 海水透明度 | 1998—2018年 | 1 | MODIS |
3 | 叶绿素质量浓度 | 1997—2018年 | 1 | MODIS |
4 | 净初级生产力 | 2003—2018年 | 4 | MODIS |
5 | pH值 | 2004—2018年 | 4 | MODIS |
6 | 海平面高度异常 | 1997—2018年 | 25 | TOPEX/Poseidon、 ERS-1/2 |
Tab.1 List of kilometer-level-resolution satellite data
序号 | 要素 | 选用数据时期 | 空间分 辨率/km | 卫星源 |
---|---|---|---|---|
1 | 海表温度 | 1997—2018年 | 1 | MODIS |
2 | 海水透明度 | 1998—2018年 | 1 | MODIS |
3 | 叶绿素质量浓度 | 1997—2018年 | 1 | MODIS |
4 | 净初级生产力 | 2003—2018年 | 4 | MODIS |
5 | pH值 | 2004—2018年 | 4 | MODIS |
6 | 海平面高度异常 | 1997—2018年 | 25 | TOPEX/Poseidon、 ERS-1/2 |
卫星 | 分辨率/m | 分析对象 | 区域 | 成像时间 |
---|---|---|---|---|
Sentinel-2 | 10 | 岸线 | 洪阿哈阿 帕伊岛 | 2021-12-03 |
2021-12-08 | ||||
2021-12-13 | ||||
2021-12-18 | ||||
2021-12-23 | ||||
2021-12-28 | ||||
2022-01-02 | ||||
2022-01-07 | ||||
2022-01-12 | ||||
2022-01-17 | ||||
悬浮物 质量浓度 | 帕劳 | 2021-12-25 | ||
2022-02-08 | ||||
马绍尔 群岛 | 2021-12-29 | |||
2022-01-01 | ||||
2022-01-13 | ||||
2022-01-16 | ||||
瑙鲁 | 2022-01-14 | |||
2022-01-24 | ||||
图瓦卢 | 2022-01-11 | |||
2022-01-21 | ||||
Landsat-8 | 30 | 地表温度 | 洪阿哈阿帕 伊岛及周边 海域 | 2021-10-21 |
2021-11-22 | ||||
2021-12-08 |
Tab.2 List of high-resolution satellite data
卫星 | 分辨率/m | 分析对象 | 区域 | 成像时间 |
---|---|---|---|---|
Sentinel-2 | 10 | 岸线 | 洪阿哈阿 帕伊岛 | 2021-12-03 |
2021-12-08 | ||||
2021-12-13 | ||||
2021-12-18 | ||||
2021-12-23 | ||||
2021-12-28 | ||||
2022-01-02 | ||||
2022-01-07 | ||||
2022-01-12 | ||||
2022-01-17 | ||||
悬浮物 质量浓度 | 帕劳 | 2021-12-25 | ||
2022-02-08 | ||||
马绍尔 群岛 | 2021-12-29 | |||
2022-01-01 | ||||
2022-01-13 | ||||
2022-01-16 | ||||
瑙鲁 | 2022-01-14 | |||
2022-01-24 | ||||
图瓦卢 | 2022-01-11 | |||
2022-01-21 | ||||
Landsat-8 | 30 | 地表温度 | 洪阿哈阿帕 伊岛及周边 海域 | 2021-10-21 |
2021-11-22 | ||||
2021-12-08 |
采样点位置 | 生态环境参数变化速率 | |||||||
---|---|---|---|---|---|---|---|---|
所属国家 | 经度 | 纬度 | pH值/(a-1) | 海表温度 /(℃· a-1) | 海水透明度 /(m· a-1) | 海平面高度异常 /(m· a-1) | 叶绿素质量浓度/ (mg·m-3· a-1) | 净初级生产力/ (mg·m-2·d-1· a-1) |
图瓦卢 | 177.94°E | 9.26°S | -0.002 3 | 0.000 72 | — | 0.000 14 | — | -0.12 |
瑙鲁 | 166.93°E | 0.86°S | -0.001 2 | 0.000 60 | 0.01 | 0.000 13 | -7E5 | — |
马绍尔群岛 | 171.14°E | 6.7°N | -0.002 2 | 0.000 60 | 0.01 | 0.000 14 | -5E5 | — |
帕劳 | 134.97°E | 7.21°N | -0.002 0 | 0.000 75 | — | 0.000 20 | — | — |
Tab.3 Location of sampling points and their changing rates of ecological environment parameters
采样点位置 | 生态环境参数变化速率 | |||||||
---|---|---|---|---|---|---|---|---|
所属国家 | 经度 | 纬度 | pH值/(a-1) | 海表温度 /(℃· a-1) | 海水透明度 /(m· a-1) | 海平面高度异常 /(m· a-1) | 叶绿素质量浓度/ (mg·m-3· a-1) | 净初级生产力/ (mg·m-2·d-1· a-1) |
图瓦卢 | 177.94°E | 9.26°S | -0.002 3 | 0.000 72 | — | 0.000 14 | — | -0.12 |
瑙鲁 | 166.93°E | 0.86°S | -0.001 2 | 0.000 60 | 0.01 | 0.000 13 | -7E5 | — |
马绍尔群岛 | 171.14°E | 6.7°N | -0.002 2 | 0.000 60 | 0.01 | 0.000 14 | -5E5 | — |
帕劳 | 134.97°E | 7.21°N | -0.002 0 | 0.000 75 | — | 0.000 20 | — | — |
Fig.3 Long term changes in marine ecological environment parameters of the surrounding waters in South Pacific island countries (The character“+” indicates significant statistical results, p<0.05.)
Fig.7 Distribution of TSM mass concentration in the surrounding waters of Tuvalu, Nauru, Marshall Islands, and Palau before and after the volcanic eruptions
Fig.8 Percentage of SST changes (a) and its histogram (b) in the waters surrounding the South Pacific island countries before and after the volcanic eruption
Fig.9 Net primary productivity and its change in the waters around Tuvalu, Nauru, Marshall Islands, and Palau before and after the eruption of the volcano
Fig.10 Histogram of net primary productivity and its change in the waters around Tuvalu, Nauru, Marshall Islands, and Palau before and after the eruption of the volcano
Fig.11 Seawater transparency and its changes in the waters around Tuvalu, Nauru, Marshall Islands, and Palau before and after the eruption of the volcano
Fig.12 Histogram of seawater transparency and its changes in the waters around Tuvalu, Nauru, Marshall Islands, and Palau before and after the eruption of the volcano
[1] |
HEIDARZADEH M, GUSMAN A R, ISHIBE T, et al. Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling[J]. Ocean Engineering, 2022, 261: 112165.
DOI URL |
[2] |
RAKESH V, HARIDAS S, SIVAN C, et al. Impact of the Hunga Tonga-Hunga Ha’apai volcanic eruption on the changes observed over the Indian near-equatorial ionosphere[J]. Advances in Space Research, 2022, 70(8): 2480-2493.
DOI URL |
[3] |
VERGOZ J, HUPE P, LISTOWSKI C, et al. IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis[J]. Earth and Planetary Science Letters, 2022, 591: 117639.
DOI URL |
[4] |
YUEN D A, SCRUGGS M A, SPERA F J, et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano[J]. Earthquake Research Advances, 2022, 2(3): 100134.
DOI URL |
[5] |
LI C Y. Global shockwaves of the Hunga Tonga-Hunga Ha’apai volcano eruption measured at ground stations[J]. iScience, 2022, 25(11): 105356.
DOI URL |
[6] |
NÉMETH K. Geoheritage and geodiversity aspects of catastrophic volcanic eruptions: Lessons from the 15th of January 2022 Hunga Tonga-Hunga Ha’apai eruption, SW Pacific[J]. International Journal of Geoheritage and Parks, 2022, 10(4): 546-568.
DOI URL |
[7] |
SUN X L, SUN W D. How will volcanic ash from the Tonga volcano eruption perturbate marine carbon cycle?[J]. Solid Earth Sciences, 2022, 7(1): 1-4.
DOI URL |
[8] | 外交部. 大洋洲[EB/OL]. (2023-07-05) [2023-08-21]. https://www.fmprc.gov.cn/web/gjhdq_676201/gj_676203/dyz_681240/. |
Ministry of Foreign Affairs. Oceania Countries[EB/OL]. (2023-07-05) [2023-08-21]. https://www.fmprc.gov.cn/web/gjhdq_676201/gj_676203/dyz_681240/. | |
[9] |
BANZON V, SMITH T M, CHIN T M, et al. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies[J]. Earth System Science Data, 2016, 8(1): 165-176.
DOI URL |
[10] |
HE X Q, PAN D L, BAI Y, et al. Recent changes of global ocean transparency observed by SeaWiFS[J]. Continental Shelf Research, 2017, 143: 159-166.
DOI URL |
[11] |
HE X Q, BAI Y, CHEN C T A, et al. Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4490-4504.
DOI URL |
[12] | HU C M, LEE Z P, FRANZ B. Chlorophylla algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference[J]. Journal of Geophysical Research: Oceans, 2012, 117(C1): C01011. |
[13] | O’REILLY J E, MARITORENA S, MITCHELL B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 1998, 103(C11): 24937-24953. |
[14] |
BEHRENFELD M J, FALKOWSKI P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(1): 1-20.
DOI URL |
[15] | DUCET N, LE TRAON P Y, REVERDIN G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research: Oceans, 2000, 105(C8): 19477-19498. |
[16] |
LE TRAON P Y, NADAL F, DUCET N. An improved mapping method of multisatellite altimeter data[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 522-534.
DOI URL |
[17] |
JIANG Z T, SONG Z G, BAI Y, et al. Remote sensing of global sea surface pH based on massive underway data and machine learning[J]. Remote Sensing, 2022, 14(10): 2366.
DOI URL |
[18] |
WANG M M, ZHANG Z J, HU T A, et al. An efficient framework for producing Landsat-based land surface temperature data using Google Earth Engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4689-4701.
DOI URL |
[19] | BROCKMANN C, DOERFFER R, PETERS M, et al. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of oceancolour products in normal and extreme optically complex waters[C]// The 2016 European Space Agency Living Planet Symposium, Prague, Czech Republic from 9-13 May 2016, Living Planet Symposium, 2016: 740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||