Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3): 38-50.DOI: 10.3969/j.issn.1001-909X.2024.03.003
Previous Articles Next Articles
XU Guangjun1,2(), SHI Yucheng1, YU Yang3, XIE Huarong4, XIE Wenhong5, LIU Jingyuan1, LIN Xiayan6, LIU Yu6, DONG Changming2,4,*()
Received:
2023-12-30
Revised:
2024-08-12
Online:
2024-09-15
Published:
2024-11-25
CLC Number:
XU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming. Recent developments in AI-based oceanic eddy identification[J]. Journal of Marine Sciences, 2024, 42(3): 38-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.03.003
Fig.2 Oceanic eddy detection model based on CNN[26] (Blue: convolution, batch normalization and ReLU-activation layers; green: pooling layers; orange: up-sampling layers; red: softmax-activation layer.)
[1] | MORROW R, LE TRAON P Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry[J]. Advances in Space Research, 2012, 50(8): 1062-1076. |
[2] | WANG H Z, LIU D, ZHANG W M, et al. Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacific[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1711-1728. |
[3] | DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Commu-nications, 2014, 5: 3294. |
[4] | JI J L, DONG C M, ZHANG B, et al. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio extension region[J]. Acta Oceanologica Sinica, 2017, 36(3): 1-7. |
[5] | FRENGER I, MÜNNICH M, GRUBER N, et al. Southern Ocean eddy phenomenology[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7413-7449. |
[6] | CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606. |
[7] | 董昌明. 海洋涡旋探测与分析[M]. 北京: 科学出版社, 2015. |
DONG C M. Oceanic eddy detection and analysis[M]. Beijing: Science Press, 2015. | |
[8] | FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6: 608-612. |
[9] | GAUBE P, CHELTON D B, SAMELSON R M, et al. Satellite observations of mesoscale eddy-induced Ekman pumping[J]. Journal of Physical Oceanography, 2015, 45(1): 104-132. |
[10] | GAUBE P, BARCELÓ C, MCGILLICUDDY D J Jr, et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic[J]. PLoS One, 2017, 12(3): e0172839. |
[11] | 李佳讯, 张韧, 陈奕德, 等. 海洋中尺度涡建模及其在水声传播影响研究中的应用[J]. 海洋通报, 2011, 30(1):37-46. |
LI J X, ZHANG R, CHEN Y D, et al. Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation[J]. Marine Science Bulletin, 2011, 30(1): 37-46. | |
[12] | DONG C M, LIU Y, LUMPKIN R, et al. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio extension region[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(9): 1167-1176. |
[13] | NENCIOLI F, DONG C M, DICKEY T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564-579. |
[14] | ZHANG C H, LI H L, LIU S T, et al. Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea[J]. Science China Earth Sciences, 2015, 58(12): 2249-2259. |
[15] | SUN W J, LIU Y, CHEN G X, et al. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(10): 17-29. |
[16] | XU G J, YANG J S, DONG C M, et al. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas[J]. International Journal of Remote Sensing, 2015, 36(18): 4621-4631. |
[17] | JI Y X, XU G J, DONG C M, et al. Submesoscale eddies in the East China Sea detected from SAR images[J]. Acta Oceanologica Sinica, 2021, 40(3): 18-26. |
[18] | OKUBO A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3): 445-454. |
[19] | WEISS J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics[J]. Physica D: Nonlinear Phenomena, 1991, 48(2/3): 273-294. |
[20] | HUNT J C R. Vorticity and vortex dynamics in complex turbulent flows[J]. Transactions of the Canadian Society for Mechanical Engineering, 1987, 11(1): 21-35. |
[21] | LIU C Q, WANG Y Q, YANG Y, et al. New omega vortex identification method[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(8): 684711. |
[22] | CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777. |
[23] | JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94. |
[24] | DOGLIOLI A M, BLANKE B, SPEICH S, et al. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C05043. |
[25] | CHAIGNEAU A, GIZOLME A, GRADOS C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceano-graphy, 2008, 79(2/3/4): 106-119. |
[26] | FRANZ K, ROSCHER R, MILIOTO A, et al. Ocean eddy identification and tracking using neural networks[C]//2018 IEEE International Geoscience and Remote Sensing Sympo-sium(IGARSS). IEEE, 2018: 6887-6890. |
[27] | LGUENSAT R, SUN M, FABLET R, et al. EddyNet: A deep neural network for pixel-wise classification of oceanic eddies[C]//2018 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). IEEE, 2018: 1764-1767. |
[28] |
LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584-1605.
DOI PMID |
[29] | DUO Z J, WANG W K, WANG H Z. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote Sensing, 2019, 11(16): 1921. |
[30] | SANTANA O J, HERNÁNDEZ-SOSA D, SMITH R N. Oceanic mesoscale eddy detection and convolutional neural network complexity[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102973. |
[31] | 张盟, 杨玉婷, 孙鑫, 等. 基于深度卷积网络的海洋涡旋检测模型[J]. 南京航空航天大学学报, 2020, 52(5):708-713. |
ZHANG M, YANG Y T, SUN X, et al. Ocean eddy detection model based on deep convolution neural network[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(5): 708-713. | |
[32] | 刘启明, 杨树国, 赵莉. 基于深度卷积神经网络的海洋多目标涡旋检测方法[J]. 青岛科技大学学报:自然科学版, 2022, 43(4):120-126. |
LIU Q M, YANG S G, ZHAO L. Ocean multi-eddy detection method based on deep convolution neural network[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2022, 43(4): 120-126. | |
[33] | LIU Y J, LI X F, REN Y B. A deep learning model for oceanic mesoscale eddy detection based on multi-source remote sensing imagery[C]//2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). IEEE, 2020: 6762-6765. |
[34] | 沈飙, 陈扬, 杨琛, 等. 海洋科学中尺度涡的计算机视觉检测和分析方法[J]. 数据与计算发展前沿, 2020, 2(6):30-41. |
SHEN B, CHEN Y, YANG C, et al. Computer vision detection and analysis of mesoscale eddies in marine science[J]. Frontiers of Data & Computing, 2020, 2(6): 30-41. | |
[35] | LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17): e94772. |
[36] | CAO L J, ZHANG D J, ZHANG X F, et al. Detection and identification of mesoscale eddies in the South China Sea based on an artificial neural network model—YOLOF and remotely sensed data[J]. Remote Sensing, 2022, 14(21): 5411. |
[37] | YAN Z F, CHONG J S, ZHAO Y W, et al. Multifeature fusion neural network for oceanic phenomena detection in SAR images[J]. Sensors, 2019, 20(1): 210. |
[38] | DU Y L, SONG W, HE Q, et al. Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection[J]. Information Fusion, 2019, 49: 89-99. |
[39] | ZHANG D, GADE M, ZHANG J W. SAR eddy detection using mask-RCNN and edge enhancement[C]//2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), September 26-October 2, 2020, Waikoloa, HI, USA. IEEE, 2020: 1604-1607. |
[40] | 贾翊文, 荆文龙, 杨骥, 等. 基于深度学习的SAR影像海洋涡旋检测算法对比分析[J]. 海洋科学进展, 2024, 42(1):137-148. |
JIA Y W, JING W L, YANG J, et al. Comparative analysis of ocean eddy detection algorithms based on deep learning in SAR images[J]. Advances in Marine Science, 2024, 42(1): 137-148. | |
[41] | LIU F Y, ZHOU H, HUANG W M, et al. Cross-domain submesoscale eddy detection neural network for HF radar[J]. Remote Sensing, 2021, 13(13): 2441. |
[42] | XU G J, CHENG C, YANG W X, et al. Oceanic eddy identification using an AI scheme[J]. Remote Sensing, 2019, 11: 1349. |
[43] | XU G J, XIE W H, DONG C M, et al. Application of three deep learning schemes into oceanic eddy detection[J]. Frontiers in Marine Science, 2021, 8: 672334. |
[44] | HANG R L, LI G, XUE M, et al. Identifying oceanic eddy with an edge-enhanced multiscale convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9198-9207. |
[45] | ZHAO Y X, FAN Z L, LI H T, et al. SymmetricNet: End-to-end mesoscale eddy detection with multi-modal data fusion[J]. Frontiers in Marine Science, 2023, 10: 1174818. |
[46] | 杜艳玲, 王丽丽, 黄冬梅, 等. 融合密集特征金字塔的改进R2CNN海洋涡旋自动检测[J]. 智能系统学报, 2023, 18(2):341-351. |
DU Y L, WANG L L, HUANG D M, et al. Improved R2CNN ocean eddy automatic detection with a dense feature pyramid[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 341-351. | |
[47] | FAN Z L, ZHONG G Q. SymmetricNet: A mesoscale eddy detection method based on multivariate fusion data[Z/OL]. arXiv, 2019: 1909. 13411. https://arxiv.org/abs/1909.13411v1. |
[48] | XIA L H, CHEN G, CHEN X Y, et al. Submesoscale oceanic eddy detection in SAR images using context and edge association network[J]. Frontiers in Marine Science, 2022, 9: 1023624. |
[49] | ZHANG Y Y, LIU N, ZHANG Z Y, et al. Detection of Bering Sea slope mesoscale eddies derived from satellite altimetry data by an attention network[J]. Remote Sensing, 2022, 14(19): 4974. |
[50] | SAIDA S J, SAHOO S P, ARI S. Deep convolution neural network based semantic segmentation for ocean eddy detection[J]. Expert Systems with Applications, 2023, 219: 119646. |
[51] | ZHAO N, HUANG B X, YANG J, et al. Oceanic eddy identification using pyramid split attention U-net with remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5. |
[52] | 杜艳玲, 吴天宇, 陈括, 等. 融合上下文和注意力的海洋涡旋小目标检测[J]. 中国图象图形学报, 2023, 28(11):3509-3519. |
DU Y L, WU T Y, CHEN K, et al. Small object detection for ocean eddies using contextual information and attention mechanism[J]. Journal of Image and Graphics, 2023, 28(11): 3509-3519. |
[1] | SHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery [J]. Journal of Marine Sciences, 2024, 42(3): 119-130. |
[2] | DONG Changming, WANG Ziyun, XIE Huarong, XU Guangjun, HAN Guoqing, ZHOU Shuyi, XIE Wenhong, SHEN Xiangyu, HAN Lei. Prospect of artificial intelligence in oceanography [J]. Journal of Marine Sciences, 2024, 42(3): 2-27. |
[3] | LU Yuting, GUO Wenkang, DING Jun, WANG Linfeng, LI Xiaohui, WANG Jiuke. Progress and challenges of artificial intelligence wave forecasting [J]. Journal of Marine Sciences, 2024, 42(3): 28-37. |
[4] | DI Ya’nan, ZHAO Ruoxuan, XU Jianzhou. Deep learning-based histopathological analysis and its potential application in marine monitoring: A review and case study [J]. Journal of Marine Sciences, 2024, 42(3): 64-74. |
[5] | JIN Yang, HAN Lei, JIN Meibing, DONG Changming. Intelligent wave forecasting and evaluation along the southeast coast of China based on ConvLSTM method [J]. Journal of Marine Sciences, 2024, 42(3): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||