Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (4): 100-113.DOI: 10.3969/j.issn.1001-909X.2024.04.009
Previous Articles Next Articles
ZHANG Mengran1,2(), XIE Anyuan1,3,*(
), HE Huizhong1,3, LU Rong1,3, TANG Minqiang1,3
Received:
2023-07-06
Revised:
2023-10-07
Online:
2024-12-15
Published:
2025-02-08
Contact:
XIE Anyuan
CLC Number:
ZHANG Mengran, XIE Anyuan, HE Huizhong, LU Rong, TANG Minqiang. Mechanism of deep-water international submarine cables damage: submarine earthquakes[J]. Journal of Marine Sciences, 2024, 42(4): 100-113.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.04.009
Fig.3 Submarine topography of Grand Banks Earthquake cables broken area and the distribution of submarine telegraph cables broken points (Figure is modified from the reference [18].)
海缆名称 | 断点位置 | 震后断缆时间 | 距震中距离/km | 断点水深/m | 断点海底坡度/(°) |
---|---|---|---|---|---|
科德角-圣皮埃尔海缆 | 44°20'N,56°40'W | 14 min | 60 | 1 900 | 5.89 |
纽约-圣约翰斯2号海缆 | 44°00'N,56°33'W | 92 | 2 900 | 2.52 | |
纽约-圣约翰斯1号海缆 | 43°48'N,56°33'W | 114 | 3 350 | 1.50 | |
哈梅尔-贝罗伯茨1号海缆 | 43°21'N,56°23'W | 153 | 3 850 | 0.56 | |
哈梅尔-贝罗伯茨2号海缆 | 43°15'N,56°07'W | 59 min | 165 | 4 000 | 0.49 |
科德角-布雷斯特海缆 | 42°05'N,55°30'W | 3 h 3 min | 297 | 4 600 | 0.16 |
纽约-法亚尔海缆 | 40°30'N,55°55'W | 9 h 1 min | 468 | 5 150 | 0.09 |
哈利法克斯-法亚尔海缆 | 40°00'N,55°20'W | 10 h 18 min | 530 | 5 250 | 0.08 |
纽约-奥尔塔海缆 | 39°29'N,53°47'W | 13 h 17 min | 607 | 5 250 | 0.07 |
Tab.1 Statistics of submarine telegraph cables broken in Middle Canyon after the Grand Banks Earthquake[12]
海缆名称 | 断点位置 | 震后断缆时间 | 距震中距离/km | 断点水深/m | 断点海底坡度/(°) |
---|---|---|---|---|---|
科德角-圣皮埃尔海缆 | 44°20'N,56°40'W | 14 min | 60 | 1 900 | 5.89 |
纽约-圣约翰斯2号海缆 | 44°00'N,56°33'W | 92 | 2 900 | 2.52 | |
纽约-圣约翰斯1号海缆 | 43°48'N,56°33'W | 114 | 3 350 | 1.50 | |
哈梅尔-贝罗伯茨1号海缆 | 43°21'N,56°23'W | 153 | 3 850 | 0.56 | |
哈梅尔-贝罗伯茨2号海缆 | 43°15'N,56°07'W | 59 min | 165 | 4 000 | 0.49 |
科德角-布雷斯特海缆 | 42°05'N,55°30'W | 3 h 3 min | 297 | 4 600 | 0.16 |
纽约-法亚尔海缆 | 40°30'N,55°55'W | 9 h 1 min | 468 | 5 150 | 0.09 |
哈利法克斯-法亚尔海缆 | 40°00'N,55°20'W | 10 h 18 min | 530 | 5 250 | 0.08 |
纽约-奥尔塔海缆 | 39°29'N,53°47'W | 13 h 17 min | 607 | 5 250 | 0.07 |
Fig.4 Locations of broken points of submarine telegraph cables and the velocity change of turbidity current along the topographic profile of the Middle Canyon axis
Fig.5 Submarine topography of Hengchun Earthquake cables broken area and the distribution of submarine fiber optic cables broken points (Figure is modified from the reference [22].)
海缆名称 | 断点位置 | 震后断缆时间 | 距震中距离/km | 断点水深/m | 断点海底坡度/(°) |
---|---|---|---|---|---|
中美海缆W2段 | 22°01'N,120°07'E | 1 min | 46 | 1 850 | 0.39 |
城市间海缆2B段 | 21°58'N,120°10'E | 11 min | 40 | 2 000 | 1.28 |
亚欧3号海缆1.8段 | 21°45'N,120°16'E | 36 | 2 500 | 2.82 | |
亚欧3号海缆1.7段 | 21°30'N,120°12'E | 15 min | 58 | 2 950 | 0.71 |
环球北亚环形海缆E段 | 21°19'N,120°13'E | 1 h 13 min | 73 | 3 100 | 1.38 |
城市间海缆2C段 | 21°19'N,120°09'E | 2 h 32 min | 77 | 3 150 | 0.52 |
亚太2号海缆7段 | 21°07'N,120°08'E | 3 h 40 min | 97 | 3 350 | 0.63 |
亚太2号海缆3段 | 20°53'N,120°02'E | 5 h 34 min | 125 | 3 700 | 0.18 |
亚太海缆B17段 | 20°48'N,120°05'E | 5 h 49 min | 131 | 3 750 | 0.53 |
中美海缆S1段 | 20°39'N,120°09'E | 6 h 36 min | 144 | 3 850 | 0.16 |
环球北亚环形海缆DC段 | 20°28'N,120°14'E | 8 h 16 min | 161 | 3 950 | 0.52 |
亚太海缆B5段 | 20°19'N,120°18'E | 8 h 29 min | 176 | 4 000 | 0.16 |
环球海缆P1段 | 20°17'N,120°18'E | 8 h 30 min | 181 | 4 050 | 0.17 |
中美海缆W1段 | 21°02'N,120°06'E | 13 h 38 min | 107 | 3 450 | 1.52 |
城市间海缆5段 | 19°45'N,120°15'E | 240 | 4 100 | 1.34 |
Tab.2 Statistics of submarine fiber optic cables broken in Gaoping Canyon and Manila Trench after Hengchun Earthquake[22?-24]
海缆名称 | 断点位置 | 震后断缆时间 | 距震中距离/km | 断点水深/m | 断点海底坡度/(°) |
---|---|---|---|---|---|
中美海缆W2段 | 22°01'N,120°07'E | 1 min | 46 | 1 850 | 0.39 |
城市间海缆2B段 | 21°58'N,120°10'E | 11 min | 40 | 2 000 | 1.28 |
亚欧3号海缆1.8段 | 21°45'N,120°16'E | 36 | 2 500 | 2.82 | |
亚欧3号海缆1.7段 | 21°30'N,120°12'E | 15 min | 58 | 2 950 | 0.71 |
环球北亚环形海缆E段 | 21°19'N,120°13'E | 1 h 13 min | 73 | 3 100 | 1.38 |
城市间海缆2C段 | 21°19'N,120°09'E | 2 h 32 min | 77 | 3 150 | 0.52 |
亚太2号海缆7段 | 21°07'N,120°08'E | 3 h 40 min | 97 | 3 350 | 0.63 |
亚太2号海缆3段 | 20°53'N,120°02'E | 5 h 34 min | 125 | 3 700 | 0.18 |
亚太海缆B17段 | 20°48'N,120°05'E | 5 h 49 min | 131 | 3 750 | 0.53 |
中美海缆S1段 | 20°39'N,120°09'E | 6 h 36 min | 144 | 3 850 | 0.16 |
环球北亚环形海缆DC段 | 20°28'N,120°14'E | 8 h 16 min | 161 | 3 950 | 0.52 |
亚太海缆B5段 | 20°19'N,120°18'E | 8 h 29 min | 176 | 4 000 | 0.16 |
环球海缆P1段 | 20°17'N,120°18'E | 8 h 30 min | 181 | 4 050 | 0.17 |
中美海缆W1段 | 21°02'N,120°06'E | 13 h 38 min | 107 | 3 450 | 1.52 |
城市间海缆5段 | 19°45'N,120°15'E | 240 | 4 100 | 1.34 |
Fig.6 Locations of broken points of submarine fiber optic cables and the velocity change of turbidity currents along the topographic profile of the Gaoping Canyon and Manila Trench axes
Fig.7 The model of submarine turbidity current damaging submarine cables after earthquake in passive continental margin (a) and active continental margin (b)
[1] | PALMER F A. A global comparison of repair commencement times: Update on the analysis of cable repair data[C]// Inter-national Cable Protection Committee (ICPC) Plenary, 2022. |
[2] | KORDAHI M E, RAPP R J, STIX R K, et al. Global trends in submarine cable system faults 2019 update[C]// Proceedings of the SubOptic2019, 2019: 1-7. |
[3] | 叶银灿, 姜新民, 潘国富, 等. 海底光缆工程[M]. 北京: 海洋出版社, 2015. |
YE Y C, JIANG X M, PAN G F, et al. Submarine fiber optic cable engineering[M]. Beijing: China Ocean Press, 2015. | |
[4] | 裘忠良. 保护海底通信光缆的技术措施[J]. 航海, 2015(6):62-68. |
QIU Z L. Technical measures to protect submarine commu-nication optical cable[J]. Navigation, 2015(6): 62-68. | |
[5] | 蔡海民. 建立新型维护模式及时保障国际海缆可靠运营[J]. 世界电信, 2013, 26(7):36-39. |
CAI H M. Establishing a new maintenance mode to ensure the reliable operation of international submarine cables in time[J]. World Telecommunications, 2013, 26(7): 36-39. | |
[6] | 张效龙, 徐家声. 海缆安全影响因素评述[J]. 海岸工程, 2003, 22(2):1-7. |
ZHANG X L, XU J S. A survey of the factors affecting submarine cable safety[J]. Coastal Engineering, 2003, 22(2): 1-7. | |
[7] | 陈晓明, 高军诗, 朱晓卿. 海底光缆建设维护提升研究[J]. 信息通信技术, 2021, 15(4):79-84. |
CHEN X M, GAO J S, ZHU X Q. Study on the improvement of submarine cable construction and maintenance[J]. Infor-mation and Communications Technologies, 2021, 15(4): 79-84. | |
[8] | 颜志源. 首条“大三通”海缆:海峡光缆1号故障分析[J]. 计算机产品与流通, 2020(10):281. |
YAN Z Y. Fault analysis of the first “big three links” submarine cable—Strait optical cable No.1[J]. Computer Products and Circulation, 2020(10): 281. | |
[9] | 袁峰, 查苗, 张鹏杨. 海底光缆的船锚威胁及其防护措施[J]. 光纤与电缆及其应用技术, 2015(6):26-29. |
YUAN F, ZHA M, ZHANG P Y. Anchor threats and protection measures of submarine cables[J]. Optical Fiber & Electric Cable and Their Applications, 2015(6): 26-29. | |
[10] | 陈小玲, 李冬, 陈培雄, 等. 渔业活动对东海海域海底光缆安全的影响[J]. 海洋学研究, 2010, 28(2):72-78. |
CHEN X L, LI D, CHEN P X, et al. The effect study on submarine cable safety caused by fishing activities[J]. Journal of Marine Sciences, 2010, 28(2): 72-78. | |
[11] | 刘爱文. 海底光缆的地震影响分析[J]. 国际地震动态, 2007(2):19-23. |
LIU A W. Earthquake effects on submarine cables[J]. Recent Developments in World Seismology, 2007(2):19-23. | |
[12] | HEEZEN B C, EWING W M. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. American Journal of Science, 1952, 250(12): 849-873. |
[13] | PIPER D J W, COCHONAT P, MORRISON M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology, 1999, 46(1): 79-97. |
[14] | JAMES T L, DON C S. How submarine canyons function: Insights from the cable-crossed Gaoping and Fangliao canyons, Taiwan[C]// International Cable Protection Committee (ICPC) Plenary, 2015. |
[15] | 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报:自然科学版, 2014, 44(10):98-105. |
XU J P. Turbidity current research in the past century: An overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98-105. | |
[16] | LØVHOLT F, SCHULTEN I, MOSHER D, et al. Modelling the 1929 Grand Banks slump and landslide tsunami[J]. Geological Society, London, Special Publications, 2019, 477(1): 315-331. |
[17] | RUFFMAN A, HANN V. The Newfoundland tsunami of November 18, 1929: An examination of the twenty-eight deaths of the “South Coast Disaster”[J]. Newfoundland and Labrador Studies, 2006, 21(1): 97-148. |
[18] | FINE I V, RABINOVICH A B, BORNHOLD B D, et al. The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling[J]. Marine Geology, 2005, 215(1/2): 45-57. |
[19] | NOF D. Rotational turbidity flows and the 1929 Grand Banks earthquake[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43(8): 1143-1163. |
[20] | LEONARD P E. Frequency and triggering mechanisms of submarine mass movements and their geohazard implications[D]. Durham, North East England, UK: Durham University, 2017. |
[21] | CARTER L, GAVEY R, TALLING P, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2): 58-67. |
[22] | HSU S K, KUO J, CHUNG L L, et al. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(6): 767-772. |
[23] | WENG Y T, LIN C C, JEAN W Y, et al. Learning from earthquakes: the ML6.7(MW7.1) Taiwan earthquake of December 26, 2006[R/OL]. [2022-12-22]. https://www.eeri.org/lfe/pdf/taiwan_December_26_2006_EQ.pdf. |
[24] | 胡晓女. 就中国台湾地震海缆中断谈海缆通信[J]. 通信世界, 2007(2):1-3. |
HU X N. Discussion on submarine cable communication based on submarine cable interruption in China Taiwan Province earthquake[J]. Communications World, 2007(2): 1-3. | |
[25] | 孙振凯. 台湾南部发生7.2级地震地震损坏海底电缆亚洲互联网、通讯受阻[J]. 国际地震动态, 2007(1):43-44. |
SUN Z K. An earthquake of magnitude 7.2 occurred in southern in China Taiwan Province, which damaged submarine cables, Asian Internet and blocked communication[J]. Recent Developments in World Seismology, 2007(1): 43-44. | |
[26] | 约瑟·切斯尼. 海底光缆通信系统:上册:设计及应用[M]. 北京: 机械工业出版社, 2018. |
CHESNOY J. Undersea fiber communication systems: volume one: design & applications[M]. Beijing: China Machine Press, 2018. | |
[27] | Milestones: French transatlantic telegraph cable of 1898[EB/OL]. (2018-2-06) [2022-2-22]. https://ethw.org/Milestones:French_Transatlantic_Telegraph_Cable_of_1898. |
[28] | RAPP R J. Cable laying and repair-cable ship operations [EB/OL]. (2014-2-23) [2022-2-22]. http://www.sargassoseacommission.org/storage/documents/Cable_Instal-lation_and_Maintenance_-_TE_SubCom_Sargasso_Sea_Final1.pdf. |
[29] | MAYER L, JAKOBSSON M, ALLEN G, et al. The Nippon foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030[J]. Geosciences, 2018, 8(2): 63-81. |
[30] | 张旭苹, 陈晓红, 梁蕾, 等. 长距离海缆在线监测改进型C-OTDR系统[J]. 光学学报, 2021, 41(13):1306001. |
ZHANG X P, CHEN X H, LIANG L, et al. Enhanced C-OTDR-based online monitoring scheme for long-distance submarine cables[J]. Acta Optica Sinica, 2021, 41(13): 1306001. | |
[31] | 冯迎宾, 刘文竹, 杨昆, 等. 海底观测网海缆低阻抗故障识别及定位方法[J]. 海洋技术学报, 2020, 39(5):39-45. |
FENG Y B, LIU W Z, YANG K, et al. Detection and location of low impedance fault for submarine cable of seafloor observatory network[J]. Journal of Ocean Technology, 2020, 39(5): 39-45. | |
[32] | 隗小斐, 吴学智. COTDR技术在海光缆监测中的应用[J]. 信息通信, 2017(8):4-6. |
WEI X F, WU X Z. Application of COTDR technology in submarine cable monitoring[J]. Information & Communi-cations, 2017(8): 4-6. | |
[33] | LENG W. Investigating sedimentary records of deglacial outburst events from the Laurentian Channel ice stream[D]. Bremen: Universitat Bremen, 2018. |
[34] | GAGNÉ H, LAJEUNESSE P, ST-ONGE G, et al. Recent transfer of coastal sediments to the Laurentian Channel, Lower St.Lawrence Estuary (Eastern Canada), through submarine canyon and fan systems[J]. Geo-Marine Letters, 2009, 29(3): 191-200. |
[35] | PINET N, BRAKE V, CAMPBELL C, et al. Seafloor and shallow subsurface of the St. Lawrence River Estuary[J]. Geoscience Canada, 2011, 38(1): 31-40. |
[36] | PIPER D J W, SHAW J, SKENE K I. Stratigraphic and sedimentological evidence for late Wisconsinan sub-glacial outburst floods to Laurentian Fan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(1): 101-119. |
[37] | LENG W, VON DOBENECK T, JUST J, et al. Compositional changes in deglacial red mud event beds off the Laurentian Channel reveal source mixing, grain-size partitioning and ice retreat[J]. Quaternary Science Reviews, 2019, 215: 98-115. |
[38] | 王策, 崔贺旗, 曾乐田, 等. 马尼拉海沟北部沉积物物源示踪:来自碎屑锆石年代学的评估[J]. 中国科学:地球科学, 2023, 53(1):41-54. |
WANG C, CUI H Q, ZENG L T, et al. Provenance of sediments in the northern Manila Trench: An assessment from detrital zircon geochronology[J]. Science China Earth Sciences, 2023, 66(1): 41-53. | |
[39] | 江肖鹏, 王远见, 杨飞, 等. 水沙自加速异重流水槽试验研究[J]. 人民黄河, 2022, 44(4): 132-136. |
JIANG X P, WANG Y J, YANG F, et al. Experimental study on self-accelerating turbidity currents in flume[J]. Yellow River, 2022, 44(4): 132-136. | |
[40] | ALHADDAD S, DE WIT L, LABEUR R J, et al. Modeling of breaching-generated turbidity currents using large eddy simulation[J]. Journal of Marine Science and Engineering, 2020, 8(9): 728. |
[41] | SEQUEIROS O E, NARUSE H, ENDO N, et al. Experimen-tal study on self-accelerating turbidity currents[J]. Journal of Geophysical Research: Oceans, 2009, 114: C05025. |
[42] |
TALLING P J, BAKER M L, POPE E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13(1): 4193.
DOI PMID |
[43] | TALLING P J, CARTIGNY M J B, POPE E, et al. Detailed monitoring reveals the nature of submarine turbidity currents[J]. Nature Reviews Earth & Environment, 2023, 4: 642-658. |
[44] | 江伟, 邵振宇, 栗之炜. 深海海底光缆敷设施工余量控制的原理和控制软件的应用[J]. 海洋开发与管理, 2018, 35(8):90-94. |
JIANG W, SHAO Z Y, LI Z W. The principle of slack control in submarine cable laying in deep sea and application of control software[J]. Ocean Development and Management, 2018, 35(8): 90-94. | |
[45] | 栗之炜. 论Makailay软件对深海海底光缆敷设精确性的影响[C]// 第四届全国海底光缆通信技术研讨会论文集. 北京: 人民邮电出版社, 2017:80-86. |
LI Z W. The influence discussion of Makailay software on the accuracy of deep ocean submarine optical cable laying[C]// Proceedings of the fourth national symposium on submarine fiber optical cable communication technology. Beijing: Posts & Telecom Press, 2017: 80-86. | |
[46] | 赵波. 海缆船的现状与展望[J]. 航海技术, 2016(3):74-77. |
ZHAO B. The current situation and prospect of submarine cable ship[J]. Marine Technology, 2016(3): 74-77. | |
[47] | 李同, 郭智慧, 徐建军, 等. 运用Makailay软件提高深海地震勘探放缆精度[J]. 物探装备, 2012, 22(2):85-89. |
LI T, GUO Z H, XU J J, et al. Using Makailay software to improve cable laying accuracy in deep sea exploration[J]. Equipment for Geophysical Prospecting, 2012, 22(2): 85-89. | |
[48] | OGASAWARA Y, NATSU W. Proposal for reducing failure rate of fibre-optic submarine cables in deep-sea based on fault analysis and experiments[J]. Journal of Advanced Marine Science and Technology Society, 2020, 25(2): 1-12. |
[49] | 舒畅, 王瑛剑, 李晓东. URADUCT保护套管在深海海底光缆施工中的应用研究[C]// 第四届全国海底光缆通信技术研讨会论文集. 北京: 人民邮电出版社, 2017:52-57. |
SHU C, WANG Y J, LI X D. Research on the application of URADUCT protective sleeve in the installation of deep ocean submarine fiber optical cable[C]// Proceedings of the fourth national symposium on submarine fiber optical cable communication technology. Beijing: Posts & Telecom Press, 2017: 52-57. | |
[50] | 方磊. SPAR平台系泊缆疲劳寿命评估方法研究[D]. 天津: 天津大学, 2008. |
FANG L. Study on the assessment method of fatigue lift for mooring ropes of SPAR platform[D]. Tianjin: Tianjin University, 2008. | |
[51] | 张立永, 郝小龙, 何园园. 一种海底线缆: CN111292884A[P]. 2020-2-16. |
ZHANG L Y, HAO X L, HE Y Y. One type of submarine cable: CN111292884A[P]. 2020-2-16. |
[1] | XU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming. Recent developments in AI-based oceanic eddy identification [J]. Journal of Marine Sciences, 2024, 42(3): 38-50. |
[2] | GE Yuyu, LIAO Guanghong. Characteristics and mechanism of ocean subsurface coherent eddies: Problems and progress [J]. Journal of Marine Sciences, 2023, 41(2): 45-60. |
[3] | LI Zhichao, GUO Junru, SONG Jun, BAI Zhipeng, FU Yanzhao, CAI Yu, WANG Xifeng. Distribution, movement and generation mechanism of the mesoscale eddy around the Kuroshio in the East China Sea [J]. Journal of Marine Sciences, 2022, 40(4): 1-10. |
[4] | ZHOU Feng, QIAN Zhouyi, LIU Anqi, MA Xiao, NI Xiaobo, ZENG Dingyong, . Recent progress on the studies of the physical mechanisms of hypoxia off the Changjiang (Yangtze River) Estuary [J]. Journal of Marine Sciences, 2021, 39(4): 17-38. |
[5] |
YANG Xufeng, YU Peisong, PAN Jianming, ZHU Yuanli, ZHANG Cai, ZHANG Huijuan, .
Spatial variation of underway surface pCO2 and its controls in the Changjiang (Yangtze River) Estuary and adjacent sea area in late summer of 2019#br#
#br#
[J]. Journal of Marine Sciences, 2021, 39(4): 63-72.
|
[6] | CAI Jiaxin, PAN Guofu, CHEN Peixiong. Analysis of the characteristics and dynamic mechanism of scouring and silting changes in Oufei Tidal Flat before and after the reclamation project [J]. Journal of Marine Sciences, 2021, 39(3): 63-71. |
[7] | WANG Yanbing, HAN Xibin, HU Zhilong, ZHAO Ning, YANG Fanlin, GE Qian, XU Dong, GAO Jinyao. Morphology, distribution and evolution process of submarine canyons in the Asian Continental Margin [J]. Journal of Marine Sciences, 2020, 38(4): 48-57. |
[8] | ZHANG Yun, ZHANG Xiao, GONG Yan-jun, LIU Ming. Preliminary study on impact mechanism and assessment theory system of island ecosystem vulnerability: The cases study of islands in Liaoning Province [J]. Journal of Marine Sciences, 2019, 37(4): 68-78. |
[9] | LIU Cong-shu, DING Wei-wei, YIN Shao-ru, FANG Peng-gao, DING Hang-hang. Geomorphology, sedimentary characteristics and controlling factors of submarine canyons in the northern continental slope of the South China Sea [J]. Journal of Marine Sciences, 2019, 37(2): 28-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||