Based on the sea surface wind data at 10 m during 1979 to 2018 from European Center for MediumRange Weather Forecasts (ECMWF), the Growing Hierarchical Self-Organizing Map (GHSOM) method were used to analyze the seasonal variation and interannual anomaly variation characteristics of near-surface wind field over the South China Sea (SCS). Four feature patterns are extracted in the first-layer GHSOM from original wind field data, which highly summarize the seasonal variation characteristics, and the second-layer results reveal the monthly variation characteristics. Four anomaly feature patterns also are extracted in the first-layer GHSOM network and they are anticyclonic wind anomaly, cyclonic wind anomaly, southwest wind anomaly and northeast wind anomaly patterns, respectively. Anticyclonic and cyclonic wind anomaly patterns are closely related to ENSO events with time lags by three months and five months comparing with Niño3.4 index. Anticyclonic and cyclonic wind anomalies also show asymmetry, that is, the amplitude of anticyclonic wind anomaly is obviously larger than that of cyclonic wind anomaly. The occurrence frequency of the northeast wind anomaly pattern is greater than that of the southwest wind anomaly pattern. The more SOM patterns in the second layer expose particulars of anomaly wind.
Mangroves, coastal salt marshes and seagrass beds, as the typical coastal blue carbon ecosystems, have been widely recognized for their remarkable capacity in carbon storage. Vegetation carbon pool and sediment (or soil) carbon pool were considered to be the major carbon pools within the coastal blue ecosystems and their variations determined the overall carbon sequestration of the ecosystems. From a perspective of carbon pool interactions, this study summarized the previous research work based on literature review, including the interactions within various vegetation carbon pools and within various sediment carbon pools, as well as the interactions between vegetation and sediment carbon pools. Interspecific competition, allochthonous carbon input and biogeomorphology were found to be the key to understand the carbon pool interactions. Finally, a perspective on the current state-of-the-art of blue carbon pool study is offered, with challenges and suggestions for future directions.
The foot of the continental slope is an important topographical feature of the continental margin. Its the basis for coastal states to extend its continental shelf rights and to delimit the outer limit of the continental shelf beyond 200 nautical miles. Its also an important technical parameter that the Commission on the Limits of the Continental Shelf pays special attention to when considering the submissions of coastal states. The formulation of the continental shelf regime in Article 76 of the United Nations Convention on the Law of the Sea originates from the typical passive continental margin. However, due to the diversity and complexity of the global continental margin, especially the transformation and influence of late tectonic activities and sedimentation on the continental margin, the seabed topography is extremely complex and changeable, which makes it very difficult to identify the foot of the continental slope. In addition, in order to obtain the largest extent of the outer continental shelf, each coastal state has interpreted the relevant provisions of the foot of the continental slope in their own favor, making the foot of the continental slope a hot and controversial issue in the delimitation of the outer continental shelf. Based on the provisions of the United Nations Convention on the Law of the Sea and the "Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf" on the foot of the continental slope, combined with the geological characteristics of different types of continental margins and the delimitation practice of various coastal states, the determination of the base of the continental slope, the selection of the point of greatest change and the application of the evidence to the contrary are discussed.