海洋学研究 ›› 2023, Vol. 41 ›› Issue (1): 96-109.DOI: 10.3969-j.issn.1001-909X.2023.01.008
伍良旭1,2(), 邹慧敏1,2, 陈威3, 许明海3, 蔡厚才4, 陈抒忆5, 李香兰1,2,*()
收稿日期:
2022-08-30
修回日期:
2023-01-23
出版日期:
2023-03-15
发布日期:
2023-04-28
通讯作者:
李香兰(1980—),女,副教授,主要从事陆地生态系统碳循环与温室气体研究,E-mail:作者简介:
伍良旭(1998—),女,四川省泸州市人,主要从事海岸带蓝碳研究,E-mail:wuliangxu@mail.bnu.edu.cn。
基金资助:
WU Liangxu1,2(), ZOU Huimin1,2, CHEN Wei3, XU Minghai3, CAI Houcai4, CHEN Shuyi5, LI Xianglan1,2,*()
Received:
2022-08-30
Revised:
2023-01-23
Online:
2023-03-15
Published:
2023-04-28
摘要:
海岛森林生态系统受地理位置特殊和数据源较少等因素影响,其碳通量动态监测及碳汇功能评估鲜见报道。该文以南麂岛森林生态系统为研究对象,基于涡度相关技术探讨了2020—2021年净生态系统碳生产力(net ecosystem productivity, NEP)、总初级生产力(gross primary productivity, GPP)和生态系统呼吸(ecosystem respiration, Reco)的变化特征及其影响因素。结果显示,南麂岛森林生态系统表现为碳吸收,2020和2021年CO2净吸收量分别为516 g C·m-2·a-1和598 g C·m-2·a-1,Reco分别为1 037 g C·m-2·a-1和1 646 g C·m-2·a-1,GPP分别为1 552 g C·m-2·a-1和2 244 g C·m-2·a-1。太阳总辐射(Rg)、光合有效辐射(PAR)、净辐射(Rn)、显热(H)与NEP、GPP显著正相关(p≤0.001);空气温度(Tair)和土壤温度(Tsoil)与Reco显著正相关(p≤0.001)。日尺度上南麂岛森林光合作用时间长于碳吸收时间,当Tair达到10.05~27.76 ℃,PAR达到110.47~429.44 μmol·m-2·s-1时,海岛森林光合作用强度高于生态系统呼吸作用强度,表现为CO2吸收。南麂岛森林生态系统碳通量监测与评估将为建立我国蓝碳动态监测评估管理体系提供重要的理论支持。
中图分类号:
伍良旭, 邹慧敏, 陈威, 许明海, 蔡厚才, 陈抒忆, 李香兰. 国家自然保护区海岛森林碳汇潜力评估及驱动因素分析[J]. 海洋学研究, 2023, 41(1): 96-109.
WU Liangxu, ZOU Huimin, CHEN Wei, XU Minghai, CAI Houcai, CHEN Shuyi, LI Xianglan. Assessment of carbon sink potential and driving factors of island forests on national nature reserve[J]. Journal of Marine Sciences, 2023, 41(1): 96-109.
图3 2020年和2021年海岛森林净生态系统碳交换(NEE)、植被总初级生产力(GPP)和生态系统呼吸(Reco)的变化趋势及累积状况
Fig.3 Change trends and cumulative status of NEE, GPP and Reco in island forests during 2020-2021
图4 2020年和2021年海岛森林不同季节净生态系统碳交换(NEE)、植被总初级生产力(GPP)和生态系统呼吸(Reco)日变化趋势图
Fig.4 Daily chang trends in NEE, GPP and Reco in island forests by season in 2020 and 2021
图5 2020年和2021年海岛森林不同季节光合有效辐射(PAR)和气温(Tair)的日变化趋势 (红色阴影为碳吸收时间段,灰色阴影为日出至日落时间段。)
Fig.5 Daily change trends in PAR and Tair in island forests by season in 2020 and 2021 (The shade of red is the carbon absorption period and the shade of gray is the sunrise to sunset period.)
图7 2020—2021年海岛森林碳通量与环境因子相关性 (图中参数的解释说明参见图6。)
Fig.7 Correlation coefficients between carbon fluxes and environmental factors in island forests during 2020-2021 (See Figure 6 for an explanation of the parameters in the figure.)
研究区域 | 经纬度 | 蓝碳类型 | NEP/(g C·m-2·a-1) | 参考文献 |
---|---|---|---|---|
广东高桥 | 21.56°N, 109.75°E | 自然红树林 | 2 101.77 | 文献[ |
福建云霄 | 23.92°N, 117.41°E | 自然红树林 | 540~1 233 | 文献[ |
广东雷州 | 20.00°N, 110.09°E | 恢复红树林 | 1 105.15 | 文献[ |
香港米埔 | 22.49°N, 114.3°E | 恢复红树林 | 690~890 | 文献[ |
广东高桥 | 21.56°N, 109.75°E | 自然红树林 | 721 | 文献[ |
广东珠江口 | 22.60°N, 113.64°E | 恢复红树林 | 175 | 文献[ |
中国 | 红树林 | 209~973 | 文献[ | |
Florida Everglades, USA | 25.364 6°N, 81.077 9°W | 自然红树林 | 832~1 170 | 文献[ |
Sundarbans, India | 20.82°N, 88.61°E | 自然红树林 | 249 | 文献[ |
New Caledonia, France | 20.937 5°N, 164.658 3°E | 自然红树林 | 73.8 | 文献[ |
全球 | 红树林 | 649.89 | 文献[ | |
上海长江口 | 31.213 0°N, 121.906 9°E | 盐沼湿地 | 901 | 文献[ |
上海九段沙 | 31.213 0°N, 121.906 9°E | 盐沼湿地 | 550~869 | 文献[ |
上海崇明东滩 | 31.516 6°—31.516 9°N, 121.960 0°—121.971 6°E | 盐沼湿地 | 518~737 | 文献[ |
山东黄河三角洲 | 37.763 8°N, 118.973 3°E | 盐沼湿地 | 237~261 | 文献[ |
中国 | 盐沼湿地 | 865 | 文献[ | |
Massachusetts, USA | 42.736°N, 70.828°W | 盐沼湿地 | 256~337 | 文献[ |
全球 | 盐沼 | 522.17 | 文献[ | |
全球 | 海草床 | 367~646 | 文献[ | |
Tucson, USA Arizona, USA | 32.416 6°N, 110.725 3°W | 海岛森林 | 371~651 | 文献[ |
Vancouver Island, Canada | 49.519 4°—49.872 2°N, 124.901 6°—125.335 0°W | 海岛森林 | 359 ~635 | 文献[ |
浙江南麂岛 | 27.476°N, 121.053°E | 海岛森林 | 516~598 | 本研究 |
表1 全球范围内典型地区海岸带蓝碳生态系统的净生态系统生产力 (NEP)
Tab.1 NEP in blue carbon ecosystems of coastal zone in typical regions on a global scale
研究区域 | 经纬度 | 蓝碳类型 | NEP/(g C·m-2·a-1) | 参考文献 |
---|---|---|---|---|
广东高桥 | 21.56°N, 109.75°E | 自然红树林 | 2 101.77 | 文献[ |
福建云霄 | 23.92°N, 117.41°E | 自然红树林 | 540~1 233 | 文献[ |
广东雷州 | 20.00°N, 110.09°E | 恢复红树林 | 1 105.15 | 文献[ |
香港米埔 | 22.49°N, 114.3°E | 恢复红树林 | 690~890 | 文献[ |
广东高桥 | 21.56°N, 109.75°E | 自然红树林 | 721 | 文献[ |
广东珠江口 | 22.60°N, 113.64°E | 恢复红树林 | 175 | 文献[ |
中国 | 红树林 | 209~973 | 文献[ | |
Florida Everglades, USA | 25.364 6°N, 81.077 9°W | 自然红树林 | 832~1 170 | 文献[ |
Sundarbans, India | 20.82°N, 88.61°E | 自然红树林 | 249 | 文献[ |
New Caledonia, France | 20.937 5°N, 164.658 3°E | 自然红树林 | 73.8 | 文献[ |
全球 | 红树林 | 649.89 | 文献[ | |
上海长江口 | 31.213 0°N, 121.906 9°E | 盐沼湿地 | 901 | 文献[ |
上海九段沙 | 31.213 0°N, 121.906 9°E | 盐沼湿地 | 550~869 | 文献[ |
上海崇明东滩 | 31.516 6°—31.516 9°N, 121.960 0°—121.971 6°E | 盐沼湿地 | 518~737 | 文献[ |
山东黄河三角洲 | 37.763 8°N, 118.973 3°E | 盐沼湿地 | 237~261 | 文献[ |
中国 | 盐沼湿地 | 865 | 文献[ | |
Massachusetts, USA | 42.736°N, 70.828°W | 盐沼湿地 | 256~337 | 文献[ |
全球 | 盐沼 | 522.17 | 文献[ | |
全球 | 海草床 | 367~646 | 文献[ | |
Tucson, USA Arizona, USA | 32.416 6°N, 110.725 3°W | 海岛森林 | 371~651 | 文献[ |
Vancouver Island, Canada | 49.519 4°—49.872 2°N, 124.901 6°—125.335 0°W | 海岛森林 | 359 ~635 | 文献[ |
浙江南麂岛 | 27.476°N, 121.053°E | 海岛森林 | 516~598 | 本研究 |
[1] | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6):58-64. |
WANG C, ZHANG Y X. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58-64. | |
[2] | 韩扬眉. 中国工程院发布《我国碳达峰碳中和战略及路径》成果[N]. 中国科学报,2022-04-01(1)[2022-06-26]. |
HAN Y M. Chinese Academy of Engineering Releases Results of “China's Carbon Neutral Strategy and Pathway to Reach Peak Carbon”[N]. China Science News, 2022-04-01(1)[2022-06-26]. | |
[3] |
LOWRY A L, MCGOWAN H A, GRAY M A. Multi-year carbon and water exchanges over contrasting ecosystems on a sub-tropical sand island[J]. Agricultural and Forest Meteorology, 2021, 304/305: 108404.
DOI URL |
[4] |
SKEETER J, CHRISTEN A, HENRY G H R. Controls on carbon dioxide and methane fluxes from a low-center polygonal peatland in the Mackenzie River Delta, Northwest Territories[J]. Arctic Science, 2022, 8(2): 471-497.
DOI URL |
[5] |
KNOWLES J F, SCOTT R L, MINOR R L, et al. Ecosystem carbon and water cycling from a sky island montane forest[J]. Agricultural and Forest Meteorology, 2020, 281: 107835.
DOI URL |
[6] | 妥彬, 田文斌, 郭超, 等. 中国东部海岛森林和灌丛土壤碳氮磷养分库的纬度变化[J]. 应用生态学报, 2019, 30(8):2631-2638. |
TUO B, TIAN W B, GUO C, et al. Latitudinal variation in soil carbon, nitrogen and phosphorus pools across island forests and shrublands in Eastern China[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2631-2638.
DOI |
|
[7] |
WONG C S. Atmospheric input of carbon dioxide from burning wood[J]. Science, 1978, 200(4338): 197-200.
PMID |
[8] |
ZHANG Y P, TAN Z H, SONG Q H, et al. Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest[J]. Atmospheric Environment, 2010, 44(32): 3886-3893.
DOI URL |
[9] |
WUTZLER T, LUCAS-MOFFAT A, MIGLIAVACCA M, et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc[J]. Biogeosciences, 2018, 15(16): 5015-5030.
DOI URL |
[10] |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
DOI URL |
[11] | KENNEDY H, BEGGINS J, DUARTE C M, et al. Seagrass sediments as a global carbon sink: Isotopic constraints[J]. Global Biogeochemical Cycles, 2010, 24: GB4026. |
[12] | 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):463-469. |
DUAN X N, WANG X K, LU F, et al. Carbon seques-tration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2): 463-469.
DOI URL |
|
[13] | 张莉, 郭志华, 李志勇. 红树林湿地碳储量及碳汇研究进展[J]. 应用生态学报, 2013, 24(4):1153-1159. |
ZHANG L, GUO Z H, LI Z Y. Carbon storage and carbon sink of mangrove wetland: Research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 1153-1159. | |
[14] | 蔡厚才. 南麂列岛国家级海洋自然保护区简志[M]. 北京: 海洋出版社, 2021. |
CAI H C. Brief notes on Nanji Islands national marine nature reserve[M]. Beijing: China Ocean Press, 2021. | |
[15] | 潘怡, 叶属峰, 刘星, 等. 南麂列岛海域生态系统服务及价值评估研究[J]. 海洋环境科学, 2009, 28(2):176-180. |
PAN Y, YE S F, LIU X, et al. Studies on marine ecosystem services and valuation: A case of Nanji Archipelagos Natural Marine Reserve[J]. Marine Environmental Science, 2009, 28(2): 176-180. | |
[16] | 郭敬, 李尚鲁, 李婷, 等. 南麂岛重现期波高空间分布特征分析[J]. 海洋预报, 2020, 37(5):86-94. |
GUO J, LI S L, LI T, et al. Characteristics of wave height spatial distribution with different return periods in Nanji Island[J]. Marine Forecasts, 2020, 37(5): 86-94. | |
[17] | 戎建涛, 朱弘, 库伟鹏, 等. 浙江南麂岛主要森林植被群落学特征研究[J]. 西北林学院学报, 2017, 32(2):294-300. |
RONG J T, ZHU H, KU W P, et al. Characteristics of vegetation communities of the main forest types in Nanji Island, Zhejiang Province[J]. Journal of Northwest Forestry University, 2017, 32(2): 294-300. | |
[18] |
FORBRICH I, GIBLIN A E. Marsh-atmosphere CO2 exchange in a New England salt marsh[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(9): 1825-1838.
DOI URL |
[19] |
WILCZAK J M, ONCLEY S P, STAGE S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology, 2001, 99(1): 127-150.
DOI URL |
[20] |
WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447): 85-100.
DOI URL |
[21] |
ALVAREZ-RAMIREZ J, RODRIGUEZ E, ARLOS ECHEVERRÍA J. CDetrending fluctuation analysis based on moving average filtering[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 354: 199-219.
DOI URL |
[22] |
MAMMARELLA I, PELTOLA O, NORDBO A, et al. Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems[J]. Atmospheric Measurement Techniques, 2016, 9(10): 4915-4933.
DOI URL |
[23] |
WATHAM T, SRINET R, NANDY S, et al. Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India[J]. Biogeochemistry, 2020, 151(2): 291-311.
DOI |
[24] |
PAPALE D, REICHSTEIN M, AUBINET M, et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583.
DOI URL |
[25] | ZHU X D, QIN Z C, SONG L L. How land-sea interaction of tidal and sea breeze activity affect mangrove net ecosystem exchange?[J]. Journal of Geophysical Research: Atmos-pheres, 2021, 126: e2020JD034047. |
[26] |
REICHSTEIN M, FALGE E, BALDOCCHI D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm[J]. Global Change Biology, 2005, 11(9): 1424-1439.
DOI URL |
[27] |
LLOYD J, TAYLOR J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315.
DOI URL |
[28] | 陈吉泉. 生态系统分析中的生物物理模型及应用[M]. 北京: 高等教育出版社, 2021. |
CHEN J Q. Biophysical models and applications in ecosystem analysis[M]. Beijing: Higher Education Press, 2021. | |
[29] |
LI X L, ZIADI N, BÉLANGER G, et al. Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics[J]. Canadian Journal of Soil Science, 2011, 91(4): 521-531.
DOI URL |
[30] |
BARBOUR M M, CERNUSAK L A, WHITEHEAD D, et al. Nocturnal stomatal conductance and implications for modelling δ18O of leaf-respired CO2 in temperate tree species[J]. Functional Plant Biology, 2006, 32(12): 1107-1121.
DOI URL |
[31] |
ZOU H M, CHEN J Q, SHAO C L, et al. Model selection for ecosystem respiration needs to be site specific: Lessons from grasslands on the Mongolian Plateau[J]. Land, 2022, 11(1): 87.
DOI URL |
[32] |
CUI X W, LIANG J, LU W Z, et al. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 249: 71-80.
DOI URL |
[33] |
LIU J G, ZHOU Y L, VALACH A, et al. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half[J]. Global Change Biology, 2020, 26(9): 4998-5016.
DOI URL |
[34] | 陈卉. 中国两种亚热带红树林生态系统的碳固定、掉落物分解及其同化过程[D]. 厦门: 厦门大学, 2013. |
CHEN H. Carbon sequestration, litter decomposition and consumption in two subtropical mangrove ecosystems of China[D]. Xiamen: Xiamen University, 2013. | |
[35] |
ZHAO X S, WANG C L, LI T T, et al. Net CO2 and CH4 emissions from restored mangrove wetland: New insights based on a case study in estuary of the Pearl River, China[J]. Science of the Total Environment, 2022, 811: 151619.
DOI URL |
[36] | BARR J G, ENGEL V, FUENTES J D, et al. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park[J]. Journal of Geophysical Research, 2010, 115: G02020. |
[37] |
RODDA S, THUMATY K, JHA C, et al. Seasonal variations of carbon dioxide, water vapor and energy fluxes in tropical Indian mangroves[J]. Forests, 2016, 7(2): 35.
DOI URL |
[38] |
LEOPOLD A, MARCHAND C, RENCHON A, et al. Net ecosystem CO2 exchange in the “Coeur de Voh” mangrove, New Caledonia: Effects of water stress on mangrove productivity in a semi-arid climate[J]. Agricultural and Forest Meteorology, 2016, 223: 217-232.
DOI URL |
[39] |
LU W Z, XIAO J F, LIU F, et al. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data[J]. Global Change Biology, 2017, 23(3): 1180-1198.
DOI URL |
[40] |
HUANG Y, CHEN Z H, TIAN B, et al. Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoal[J]. Agricultural and Forest Meteorology, 2020, 292/293: 108108.
DOI URL |
[41] | 陈梓涵. 九段沙潮汐盐沼湿地CO2通量及影响机制研究[D]. 上海: 华东师范大学, 2020. |
CHEN Z H. Ecosystem carbon flux and its influencing mechanisms over a salt marsh in the Jiuduansha shoals[D]. Shanghai: East China Normal University, 2020. | |
[42] | YAN Y E, GUO H Q, GAO Y, et al. Variations of net ecosystem CO2 exchange in a tidal inundated wetland: Coupling MODIS and tower-based fluxes[J]. Journal of Geophysical Research, 2010, 115: D15102. |
[43] |
HAN G X, CHU X J, XING Q H, et al. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1506-1520.
DOI URL |
[44] |
METSARANTA J M, TROFYMOW J A, BLACK T A, et al. Long-term time series of annual ecosystem production (1985—2010) derived from tree rings in Douglas-fir stands on Vancouver Island, Canada using a hybrid biometric-modelling approach[J]. Forest Ecology and Management, 2018, 429: 57-68.
DOI URL |
[45] |
CHENG S J, BOHRER G, STEINER A L, et al. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems[J]. Agricultural and Forest Meteorology, 2015, 201: 98-110.
DOI URL |
[46] |
YUAN W P, LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143 (3): 189-207.
DOI URL |
[47] |
VEENENDAAL E M, KOLLE O, LLOYD J. Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa[J]. Global Change Biology, 2004, 10(3): 318-328.
DOI URL |
[48] |
VAN DER HAGE J C H. Intercepted flux and the horizontal component of solar radiation[J]. Theoretical and Applied Climatology, 1995, 52: 143-149.
DOI URL |
[1] | 陈一宁, 陈鹭真. 滨海蓝碳生态系统的碳库间相互作用研究进展及展望[J]. 海洋学研究, 2023, 41(1): 3-13. |
[2] | 董迪, 黄华梅, 高晴, 陈绵润, 杨熙. 海岸带蓝碳生态系统保护空缺分析——以广东和广西为例[J]. 海洋学研究, 2023, 41(1): 110-120. |
[3] | 陈建芳, 翟惟东, 王斌, 李德望, 熊天琦, 金海燕, 李宏亮, 刘沁宇, 苗燕熠, . 河流-河口-近海连续体碳循环研究进展[J]. 海洋学研究, 2021, 39(4): 11-21. |
[4] | 李德望, 林华, 陈思杨, 王斌, 王奎, 王尧, 马云龙, 金海燕, 陈建芳, . 2017年春季长江口-东海连续体pCO2的空间分布特征及其控制因素[J]. 海洋学研究, 2021, 39(4): 52-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||