基于机器学习的热带气旋快速增强预报

罗通, 洪加诚

海洋学研究 ›› 2024, Vol. 42 ›› Issue (3) : 99-107.

PDF(2298 KB)
PDF(2298 KB)
海洋学研究 ›› 2024, Vol. 42 ›› Issue (3) : 99-107. DOI: 10.3969/j.issn.1001-909X.2024.03.008
研究论文

基于机器学习的热带气旋快速增强预报

作者信息 +

Rapid intensification forecast of tropical cyclones based on machine learning

Author information +
文章历史 +

摘要

极深对流云是热带气旋(tropical cyclone,TC)快速增强的前兆,为预报西北太平洋TC快速增强,该研究开发了一种使用极深对流云相关数据的机器学习模型。该机器学习模型整合了飓风强度统计预报快速增强指数(Statistical Hurricane Intensity Prediction Scheme-Rapid Intensification Index, SHIPS-RII)数据与TC中心300 km半径范围内极深对流云的覆盖面积。基于2011—2019年的数据,对24 h内TC增强超过30 kn和35 kn的快速增强事件分别进行了预报,相较于仅使用SHIPS-RII数据的模型,该机器学习模型在皮尔斯技能得分(PSS)方面分别提升了5.66%和9.58%,在检测概率指标(POD)方面分别提升了8.41%和8.55%。用该模型对典型台风杜鹃(Dujuan,2015)进行预报,其结果证明整合了极深对流云覆盖面积的模型在快速增强预报中具有优势,主要体现在TC初始强度较强时发生的快速增强预报。该模型对于强台风的预报具有较大的应用潜力。

Abstract

Extremely deep convective clouds are a precursor to the rapid intensification (RI) of tropical cyclones (TCs). To predict the RI of TCs in the western North Pacific (WNP), a machine learning (ML) model using data related to extremely deep convective clouds was developed. The ML model integrates the Statistical Hurricane Intensity Prediction Scheme-Rapid Intensification Index (SHIPS-RII) data and the coverage area of extremely deep convective clouds within a 300 km radius of the center of the TC. Based on data from 2011 to 2019, the model forecasted RI events that increased by more than 30 kn and 35 kn within 24 h. Compared to models using only SHIPS-RII data, this ML model showed an improvement of 5.66% and 9.58% in the Peirce Skill Score (PSS), and a relative increase of 8.41% and 8.55% in the probability of detection (POD). This model is used to forecast typical typhoon Dujuan (2015), and the results show that the model integrating the coverage area of extremely deep convective clouds has advantages in RI predictions, which is mainly reflected in RI forecasts when the initial intensity is strong. The model has great application potential for forecasting strong typhoons.

关键词

西北太平洋 / 热带气旋 / 快速增强 / 云顶红外亮温(IR BT) / 极深对流云 / 机器学习 / 台风杜鹃(Dujuan,2015) / TC初始强度

Key words

western North Pacific / tropical cyclones / rapid intensification / infrared brightness temperature (IR BT) / extremely deep convective clouds / machine learning / typhoon Dujuan(2015) / initeal intensity of TC

引用本文

导出引用
罗通, 洪加诚. 基于机器学习的热带气旋快速增强预报[J]. 海洋学研究. 2024, 42(3): 99-107 https://doi.org/10.3969/j.issn.1001-909X.2024.03.008
LUO Tong, HONG Jiacheng. Rapid intensification forecast of tropical cyclones based on machine learning[J]. Journal of Marine Sciences. 2024, 42(3): 99-107 https://doi.org/10.3969/j.issn.1001-909X.2024.03.008
中图分类号: P732.4   

参考文献

[1]
张娇艳, 吴立广, 张强. 全球变暖背景下我国热带气旋灾害趋势分析[J]. 热带气象学报, 2011, 27(4):442-454.
ZHANG J Y, WU L G, ZHANG Q. Tropical cyclone damages in China under the background of global warming[J]. Journal of Tropical Meteorology, 2011, 27(4): 442-454.
[2]
黄昌兴, 周国良, 郑磊, 等. 登陆我国台风的时空分布特征及其影响[J]. 水文, 2014, 34(6):81-85.
HUANG C X, ZHOU G L, ZHENG L, et al. Spatial and temporal distribution characteristics of landing typhoons in China and their influence[J]. Journal of China Hydrology, 2014, 34(6): 81-85.
[3]
CANGIALOSI J P, BLAKE E, DEMARIA M, et al. Recent progress in tropical cyclone intensity forecasting at the national hurricane center[J]. Weather and Forecasting, 2020, 35(5): 1913-1922.
[4]
TRABING B C, BELL M M. Understanding error distributions of hurricane intensity forecasts during rapid intensity changes[J]. Weather and Forecasting, 2020, 35(6): 2219-2234.
[5]
KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin[J]. Weather and Forecasting, 2003, 18(6): 1093-1108.
[6]
HENDRICKS E A, PENG M S, FU B, et al. Quantifying environmental control on tropical cyclone intensity change[J]. Monthly Weather Review, 2010, 138(8): 3243-3271.
[7]
CHEN H, ZHANG D L. On the rapid intensification of hurricane Wilma (2005). part II: Convective bursts and the upper-level warm core[J]. Journal of the Atmospheric Sciences, 2013, 70(1): 146-162.
[8]
CHEN X M, WANG Y Q, FANG J, et al. A numerical study on rapid intensification of typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes[J]. Journal of the Atmospheric Sciences, 2018, 75(1): 235-255.
[9]
HAZELTON A T, HART R E, ROGERS R F. Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts[J]. Monthly Weather Review, 2017, 145(8): 3095-3117.
[10]
JIANG H Y. The relationship between tropical cyclone intensity change and the strength of inner-core convection[J]. Monthly Weather Review, 2012, 140(4): 1164-1176.
[11]
MOLINARI J, VOLLARO D. Rapid intensification of a sheared tropical storm[J]. Monthly Weather Review, 2010, 138(10): 3869-3885.
[12]
ROGERS R F, REASOR P D, ZHANG J A. Multiscale structure and evolution of hurricane Earl (2010) during rapid intensification[J]. Monthly Weather Review, 2015, 143(2): 536-562.
[13]
SHI D L, CHEN G H, XIE X R. Revisiting the relationship between tropical cyclone rapid intensification and the distribution of inner-core precipitation[J]. Geophysical Research Letters, 2023, 50(17): e2023GL104810.
[14]
GAO S, ZHANG W, LIU J, et al. Improvements in typhoon intensity change classification by incorporating an ocean coupling potential intensity index into decision trees[J]. Weather and Forecasting, 2016, 31(1): 95-106.
[15]
GENG H T, SHI D W, ZHANG W, et al. A prediction scheme for the frequency of summer tropical cyclone landfalling over China based on data mining methods[J]. Meteorological Applications, 2016, 23(4): 587-593.
[16]
MERCER A, GRIMES A. Diagnosing tropical cyclone rapid intensification using Kernel methods and reanalysis datasets[J]. Procedia Computer Science, 2015, 61: 422-427.
[17]
SU H, WU L T, JIANG J H, et al. Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089102.
[18]
RUAN Z X, WU Q Y. Precipitation, convective clouds, and their connections with tropical cyclone intensity and intensity change[J]. Geophysical Research Letters, 2018, 45(2): 1098-1105.
[19]
WU Q Y, HONG J C, RUAN Z X. Diurnal variations in tropical cyclone intensification[J]. Geophysical Research Letters, 2020, 47(23): e2020GL090397.
[20]
JANOWIAK J E, JOYCE R J, YAROSH Y. A real-time global half-hourly pixel-resolution infrared dataset and its applications[J]. Bulletin of the American Meteorological Society, 2001, 82(2): 205-217.
[21]
WU Q Y, RUAN Z X. Rapid contraction of the radius of maximum tangential wind and rapid intensification of a tropical cyclone[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(3): e2020JD033681.
[22]
KAPLAN J, ROZOFF C M, DEMARIA M, et al. Evaluating environmental impacts on tropical cyclone rapid intensifi-cation predictability utilizing statistical models[J]. Weather and Forecasting, 2015, 30(5): 1374-1396.
[23]
KAPLAN J, DEMARIA M, KNAFF J A. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins[J]. Weather and Forecasting, 2010, 25(1): 220-241.

基金

国家自然科学基金项目(42227901)
浙江省重点研发项目(2024C03257)

PDF(2298 KB)

Accesses

Citation

Detail

段落导航
相关文章

/