海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 99-107.DOI: 10.3969/j.issn.1001-909X.2024.03.008

• 研究论文 • 上一篇    下一篇

基于机器学习的热带气旋快速增强预报

罗通1,2,3(), 洪加诚1,2,3,*()   

  1. 1.上海交通大学 海洋学院,上海 200240
    2.卫星海洋动力学国家重点实验室,浙江 杭州 310012
    3.自然资源部第二海洋研究所,浙江 杭州 310012
  • 收稿日期:2024-01-16 修回日期:2024-03-12 出版日期:2024-09-15 发布日期:2024-11-25
  • 通讯作者: *洪加诚(1996—), 男,江西省抚州市人,主要从事物理海洋学研究, E-mail:hongjiacheng@sjtu.edu.cn
  • 作者简介:罗通(1999—),男,山东省菏泽市人,主要从事物理海洋学研究,E-mail: lt17852412338@163.com
  • 基金资助:
    国家自然科学基金项目(42227901);浙江省重点研发项目(2024C03257)

Rapid intensification forecast of tropical cyclones based on machine learning

LUO Tong1,2,3(), HONG Jiacheng1,2,3,*()   

  1. 1. School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou 310012, China
    3. Second Institute of Oceanography, MNR, Hangzhou 310012, China
  • Received:2024-01-16 Revised:2024-03-12 Online:2024-09-15 Published:2024-11-25

摘要:

极深对流云是热带气旋(tropical cyclone,TC)快速增强的前兆,为预报西北太平洋TC快速增强,该研究开发了一种使用极深对流云相关数据的机器学习模型。该机器学习模型整合了飓风强度统计预报快速增强指数(Statistical Hurricane Intensity Prediction Scheme-Rapid Intensification Index, SHIPS-RII)数据与TC中心300 km半径范围内极深对流云的覆盖面积。基于2011—2019年的数据,对24 h内TC增强超过30 kn和35 kn的快速增强事件分别进行了预报,相较于仅使用SHIPS-RII数据的模型,该机器学习模型在皮尔斯技能得分(PSS)方面分别提升了5.66%和9.58%,在检测概率指标(POD)方面分别提升了8.41%和8.55%。用该模型对典型台风杜鹃(Dujuan,2015)进行预报,其结果证明整合了极深对流云覆盖面积的模型在快速增强预报中具有优势,主要体现在TC初始强度较强时发生的快速增强预报。该模型对于强台风的预报具有较大的应用潜力。

关键词: 西北太平洋, 热带气旋, 快速增强, 云顶红外亮温(IR BT), 极深对流云, 机器学习, 台风杜鹃(Dujuan,2015), TC初始强度

Abstract:

Extremely deep convective clouds are a precursor to the rapid intensification (RI) of tropical cyclones (TCs). To predict the RI of TCs in the western North Pacific (WNP), a machine learning (ML) model using data related to extremely deep convective clouds was developed. The ML model integrates the Statistical Hurricane Intensity Prediction Scheme-Rapid Intensification Index (SHIPS-RII) data and the coverage area of extremely deep convective clouds within a 300 km radius of the center of the TC. Based on data from 2011 to 2019, the model forecasted RI events that increased by more than 30 kn and 35 kn within 24 h. Compared to models using only SHIPS-RII data, this ML model showed an improvement of 5.66% and 9.58% in the Peirce Skill Score (PSS), and a relative increase of 8.41% and 8.55% in the probability of detection (POD). This model is used to forecast typical typhoon Dujuan (2015), and the results show that the model integrating the coverage area of extremely deep convective clouds has advantages in RI predictions, which is mainly reflected in RI forecasts when the initial intensity is strong. The model has great application potential for forecasting strong typhoons.

Key words: western North Pacific, tropical cyclones, rapid intensification, infrared brightness temperature (IR BT), extremely deep convective clouds, machine learning, typhoon Dujuan(2015), initeal intensity of TC

中图分类号: