海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 14-27.DOI: 10.3969/j.issn.1001-909X.2023.02.002
俞杰1,2(), 张翰1,2,3,*(), 陈大可1,2,3,4
收稿日期:
2022-05-20
修回日期:
2022-08-31
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*张翰(1989—),男,副研究员,主要从事台风与海洋相互作用方面的研究,E-mail:作者简介:
俞杰(1996—),男,江苏省泰州市人,主要从事台风与海洋相互作用方面的研究,E-mail:yujie@sio.org.cn。
基金资助:
YU Jie1,2(), ZHANG Han1,2,3,*(), CHEN Dake1,2,3,4
Received:
2022-05-20
Revised:
2022-08-31
Online:
2023-06-15
Published:
2023-07-27
摘要:
利用Argo浮标观测数据并结合卫星遥感及锚定浮标观测资料,对2014年超强台风“威马逊”引起的上层海洋温盐响应进行了分析和研究。结果显示,超强台风“威马逊”过境时会造成海表面温度冷却和混合层加深。通过计算混合长度和台风引起的垂向流速变化解释了次表层温度变化的原因:强混合作用和弱上升流作用致使次表层增温,反之次表层冷却。相比于温度的变化,盐度的响应更为复杂,台风引起的降水会先导致表层盐度降低,随后垂向混合引起表层盐度大幅增加,但是降水的作用能够极大地抑制这一过程;台风离境后,垂向混合减弱,强降水引起盐度大幅降低,甚至会使盐度低于台风过境前。
中图分类号:
俞杰, 张翰, 陈大可. 基于Argo数据研究南海上层海洋对超强台风“威马逊”(2014)的温盐响应[J]. 海洋学研究, 2023, 41(2): 14-27.
YU Jie, ZHANG Han, CHEN Dake. Upper ocean response to super typhoon Rammasun(2014) based on Argo data in the South China Sea[J]. Journal of Marine Sciences, 2023, 41(2): 14-27.
图1 超强台风“威马逊”的路径 (图中黑线代表台风轨迹,黑色加号表示Argo观测时所在位置,蓝色加号表示锚定浮标观测时所在位置。)
Fig.1 Track of super typhoon Rammasun (The black line represents typhoon’s track,the black plus signs represent positions of Argo at the typhoon’s arrival, the blue plus sign represents position of the moored buoy at the typhoon’s arrival.)
图2 卫星观测的7月15日—20日南海逐日海表面温度 (图中黑点代表该日中午12时台风的位置,黑线代表台风轨迹,后图同此。)
Fig.2 South China Sea daily SST observed by satellite from 15th to 20th of July (The black point represents the typhoon’s location at 12:00 UTC, the black line represents typhoon’s track, the following figures are the same.)
图4 7月13日—30日期间Argo记录的温度剖面(a~e)和Argo分布(f) (括号中数字代表观测日期相对于台风中心过境时间隔天数,负值代表过境前,正值代表过境后。)
Fig.4 Temperature profile observed by Argo from 13th to 30th of July (a-e) and distribution of Argo (f) (The numbers in brackets represent the days relative to the passage of the typhoon’s center,negative means before the typhoon’s arrival and positive means after the typhoon’s passage.)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
等温层 深度/m | 等温层 温度/℃ | 等温层 深度/m | 等温层 温度/℃ | ||
A1(5903455)① | 41.3 | 29.739 | 21.1 | 29.100 | |
A3(2901469) | 31.1 | 29.992 | 51.1 | 29.025 | |
A4(5903454) | 18.7 | 30.477 | 44.8 | 29.130 | |
A5(5902165) | 21.2 | 30.774 | 24.7 | 29.482 |
表1 台风造成的等温层深度和温度变化(强迫阶段)
Tab.1 The changes of isothermal layer depth and temperature caused by typhoon (forcing phase)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
等温层 深度/m | 等温层 温度/℃ | 等温层 深度/m | 等温层 温度/℃ | ||
A1(5903455)① | 41.3 | 29.739 | 21.1 | 29.100 | |
A3(2901469) | 31.1 | 29.992 | 51.1 | 29.025 | |
A4(5903454) | 18.7 | 30.477 | 44.8 | 29.130 | |
A5(5902165) | 21.2 | 30.774 | 24.7 | 29.482 |
图6 7月13日—30日期间Argo记录的盐度剖面(a~e)和argo分布(f) (括号中数字代表观测日期相对于台风中心过境时间隔天数,负值代表过境前,正值代表过境后。)
Fig.6 Salinity profile observed by Argo from 13th to 30th of July (a-e) and distribution of Argo (f) (The numbers in brackets represent the days relative to the passage of the typhoon’s center,negative means before the typhoon’s arrival and positive means after the typhoon’s passage.)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
混合层 深度/m | 障碍层 厚度/m | 混合层 深度/m | 障碍层 厚度/m | ||
A1(5903455) | 16.1 | 25.2 | 16.6 | 4.5 | |
A3(2901469) | 25.3 | 5.8 | 35.4 | 15.7 | |
A4(5903454) | 18.7 | 0.0 | 30.9 | 13.9 | |
A5(5902165) | 16.0 | 5.2 | 24.7 | 0 |
表2 台风造成的混合层和障碍层厚度变化(强迫阶段)
Tab.2 Changes of mixed layer depth and barrier layer thickness caused by typhoon (forcing phase)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
混合层 深度/m | 障碍层 厚度/m | 混合层 深度/m | 障碍层 厚度/m | ||
A1(5903455) | 16.1 | 25.2 | 16.6 | 4.5 | |
A3(2901469) | 25.3 | 5.8 | 35.4 | 15.7 | |
A4(5903454) | 18.7 | 0.0 | 30.9 | 13.9 | |
A5(5902165) | 16.0 | 5.2 | 24.7 | 0 |
Argo | 混合长度/m | 净抬升距离①/m |
---|---|---|
A1(5903455) | 10.01 | 3.325 |
A3(2901469) | 18.53 | -1.669 |
A4(5903454) | 14.37 | 4.268 |
A5(5902165) | 15.45 | -0.676 |
表3 混合长度及净抬升距离
Tab.3 Mixing length and net lift distance
Argo | 混合长度/m | 净抬升距离①/m |
---|---|---|
A1(5903455) | 10.01 | 3.325 |
A3(2901469) | 18.53 | -1.669 |
A4(5903454) | 14.37 | 4.268 |
A5(5902165) | 15.45 | -0.676 |
图7 7月16日—18日期间研究区域的垂向流速分布 (正值表示流速方向向上,负值表示流速方向向下。)
Fig.7 The distribution of vertical velocity of study area from 16th to 18th of July (Positive values represent upward velocity, negative values represent downward velocity.)
图9 7月17日00:00 UTC—18日06:00 UTC 3 h平均降水量(a~k)和Argo分布(l)
Fig.9 Three-hour average precipitation from 00:00 UTC on 17th of July to 06:00 UTC on 18th of July (a-k) and distribution of Argo (l)
图10 7月15日—20日期间锚定浮标S1处温度、盐度和降水量的变化 (图中虚线表示台风过境时间。数据经过了半小时滑动平均处理。)
Fig.10 Temperature,salinity and precipitation changes of moored buoy S1 from 15th to 20th of July (Dashed line represents typhoon’s passage. Data has been smoothed with a 30-minute moving average.)
[1] |
PARK J J, KWON Y O, PRICE J F. Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific[J]. Journal of Geophysical Research, 2011, 116(C12): C12025.
DOI URL |
[2] |
BALAGURU K, FOLTZ G R, LEUNG L R, et al. Global warming-induced upper-ocean freshening and the intensification of super typhoons[J]. Nature Communications, 2016, 7:13670.
DOI PMID |
[3] | 端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5):636-645. |
DUAN Y H, YU H, WU R S. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636-645. | |
[4] | 周磊, 陈大可, 雷小途, 等. 海洋与台风相互作用研究进展[J]. 科学通报, 2019, 64(1):60-72. |
ZHOU L, CHEN D K, LEI X T, et al. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin, 2019, 64(1): 60-72. | |
[5] | 刘增宏, 许建平, 朱伯康, 等. 利用Argo资料研究2001—2004年期间西北太平洋海洋上层对热带气旋的响应[J]. 热带海洋学报, 2006, 25(1):1-8. |
LIU Z H, XU J P, ZHU B K, et al. Upper ocean response to tropical cyclones in northwestern Pacific during 2001—2004 by Argo data[J]. Journal of Tropical Oceanography, 2006, 25(1): 1-8. | |
[6] |
FU H L, WANG X D, CHU P C, et al. Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 8078-8092.
DOI URL |
[7] |
PRICE J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2): 153-175.
DOI URL |
[8] | 杨元建, 傅云飞, 孙亮, 等. 基于多卫星和Argo浮标观测海洋上层对台风婷婷的响应[J]. 中国科学技术大学学报, 2010, 40(1):1-7. |
YANG Y J, FU Y F, SUN L, et al. Responses of the upper ocean to Typhoon Tingting observed from multiplatform satellites and Argo float[J]. Journal of University of Science and Technology of China, 2010, 40(1): 1-7. | |
[9] |
宋勇军, 唐丹玲. 南海东北部混合层深度对热带气旋海鸥和凤凰的响应[J]. 热带海洋学报, 2017, 36(1):15-24.
DOI |
SONG Y J, TANG D L. Mixed layer depth responses to tropical cyclones Kalmaegi and Fung-Wong in the northeastern South China Sea[J]. Journal of Tropical Oceanography, 2017, 36(1): 15-24.
DOI |
|
[10] |
ZHANG H, CHEN D K, ZHOU L, et al. Upper ocean response to typhoon Kalmaegi (2014)[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6520-6535.
DOI URL |
[11] |
LIU S S, SUN L A, WU Q Y, et al. The responses of cyclonic and anticyclonic eddies to typhoon forcing: The vertical temperature-salinity structure changes associated with the horizontal convergence/divergence[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 4974-4989.
DOI URL |
[12] |
ZHANG H, WU R H, CHEN D K, et al. Net modulation of upper ocean thermal structure by typhoon Kalmaegi (2014)[J]. Journal of Geophysical Research: Oceans, 2018, 123(10): 7154-7171.
DOI URL |
[13] |
ZHANG H, LIU X H, WU R H, et al. Ocean response to successive typhoons Sarika and Haima (2016) based on data acquired via multiple satellites and moored array[J]. Remote Sensing, 2019, 11(20): 2360.
DOI URL |
[14] | 牟平宇, 林霄沛. 台风“苏力”(2013)期间海洋上层温、盐及海平面异常变化特征[J]. 海洋湖沼通报, 2018(3):1-11. |
MU P Y, LIN X P. Changes in upper ocean temperature, salt and sea level during typhoon SOULIK(2013)[J]. Transactions of Oceanology and Limnology, 2018(3): 1-11. | |
[15] | 张翰. 上层海洋对热带气旋的动力学响应机制[D]. 厦门: 厦门大学, 2017. |
ZHANG H. Dynamical mechanisms of upper oceanic response to tropical cyclones[D]. Xiamen: Xiamen University, 2017. | |
[16] | LIN S, ZHANG W Z, SHANG S P, et al. Ocean response to typhoons in the western North Pacific: Composite results from Argo data[J]. Deep Sea Research Part I: Oceano-graphic Research Papers, 2017, 123: 62-74. |
[17] |
BALAGURU K, TARAPHDAR S, LEUNG L R, et al. Cyclone-cyclone interactions through the ocean pathway[J]. Geophysical Research Letters, 2014, 41(19): 6855-6862.
DOI URL |
[18] |
WANG X D, HAN G J, QI Y Q, et al. Impact of barrier layer on typhoon-induced sea surface cooling[J]. Dynamics of Atmospheres and Oceans, 2011, 52(3): 367-385.
DOI URL |
[19] | DE BOYER MONTÉGUT C, MIGNOT J, LAZAR A, et al. Control of salinity on the mixed layer depth in the world ocean: 1. General description[J]. Journal of Geophysical Research, 2007, 112(C6): C06011. |
[20] |
DOMINGUES R, GONI G, BRINGAS F, et al. Upper Ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations[J]. Geophysical Research Letters, 2015, 42(17): 7131-7138.
DOI URL |
[21] | REUL N, CHAPRON B, GRODSKY S A, et al. Satellite observations of the sea surface salinity response to tropical cyclones[J]. Geophysical Research Letters, 2021, 48(1): e2020GL091478. |
[22] |
HSU P C, HO C R. Typhoon-induced ocean subsurface variations from glider data in the Kuroshio region adjacent to Taiwan[J]. Journal of Oceanography, 2019, 75(1): 1-21.
DOI |
[23] | GRODSKY S A, REUL N, LAGERLOEF G, et al. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations[J]. Geophysical Research Letters, 2012, 39(20): L20603. |
[24] |
吴铃蔚, 凌征. 基于Argo资料的西北太平洋海表面盐度对台风的响应特征分析[J]. 海洋学研究, 2015, 33(3):1-6.
DOI |
WU L W, LING Z. Analysis of sea surface salinity response to typhoon in the Northwest Pacific based on Argo data[J]. Journal of Marine Sciences, 2015, 33(3): 1-6. | |
[25] |
LIU F, ZHANG H, MING J E, et al. Importance of precipitation on the upper ocean salinity response to typhoon Kalmaegi (2014)[J]. Water, 2020, 12(2): 614.
DOI URL |
[26] |
LIN Y C, OEY L Y. Rainfall-enhanced blooming in typhoon wakes[J]. Scientific Reports, 2016, 6: 31310.
DOI PMID |
[27] | 许东峰, 刘增宏, 徐晓华, 等. 西北太平洋暖池区台风对海表盐度的影响[J]. 海洋学报, 2005, 27(6):9-15. |
XU D F, LIU Z H, XU X H, et al. The influence of typhoon on the sea surface salinity in the warm pool of the western Pacific[J]. Acta Oceanologica Sinica, 2005, 27(6): 9-15. | |
[28] |
YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301.
DOI URL |
[29] |
LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699.
DOI |
[30] |
LI J G, SUN L A, YANG Y J, et al. Accurate evaluation of sea surface temperature cooling induced by typhoons based on satellite remote sensing observations[J]. Water, 2020, 12(5): 1413.
DOI URL |
[31] |
POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6929): 279-283.
DOI URL |
[32] |
JAIMES B, SHAY L K, UHLHORN E W. Enthalpy and momentum fluxes during hurricane earl relative to underlying ocean features[J]. Monthly Weather Review, 2015, 143(1): 111-131.
DOI URL |
[33] | LIU Z, LI Z, LU S, et al. Scattered data set of temperature and salinity profiles from the international Argo program over the global ocean[J]. Global Change Research Data Publishing & Repository, 2021, 5(4): 22-31. |
[34] | KARA A B, ROCHFORD P A, HURLBURT H E. An optimal definition for ocean mixed layer depth[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16803-16821. |
[35] |
BALAGURU K, FOLTZ G R, LEUNG L R, et al. Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones[J]. Geophysical Research Letters, 2015, 42(16): 6739-6746.
DOI URL |
[36] | MITARAI S, MCWILLIAMS J C. Wave glider observations of surface winds and currents in the core of Typhoon Danas[J]. Geophysical Research Letters, 2016, 43(21): 11312-11319. |
[37] |
董航, 姜良红, 章向明, 等. 台风威马逊入侵南海的路径分析[J]. 海洋学研究, 2016, 34(1):1-7.
DOI |
DONG H, JIANG L H, ZHANG X M, et al. Analysis on the track of typhoon Rammasun into the South China Sea[J]. Journal of Marine Sciences, 2016, 34(1): 1-7.
DOI |
|
[38] | 吕心艳, 许映龙, 黄焕卿. 台风“威马逊”(1409)在南海北部急剧增强的环境因子分析[J]. 海洋预报, 2021, 38(3):1-10. |
LÜ X Y, XU Y L, HUANG H Q. Analysis on environ-mental factors of the extremely rapid intensification of typhoon “Rammasun”(1409) in the northern South China Sea[J]. Marine Forecasts, 2021, 38(3): 1-10. | |
[39] |
LI X, ZHANG X L, FU D Y, et al. Strengthening effect of super typhoon Rammasun (2014) on upwelling and cold eddies in the South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(2): 403-419.
DOI |
[40] |
YAN Y F, LI L, WANG C Z. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 4829-4844.
DOI URL |
[41] |
ZHANG Z X, LIU L L, WANG F. Oceanic barrier layer variation induced by tropical cyclones in the Northwest Pacific[J]. Journal of Oceanology and Limnology, 2019, 37(2): 375-384.
DOI |
[42] |
PHAM H T, SARKAR S. Turbulent entrainment in a strongly stratified barrier layer[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 5075-5087.
DOI URL |
[1] | 宋晚郊, 张鹏, 孙凌, 唐世浩, 周芳成, . 基于DINEOF的风云极轨气象卫星海表温度重构方法研究[J]. 海洋学研究, 2022, 40(2): 10-18. |
[2] | 牛原, 邱志伟, 刘瑞翔, 吴振宇, 常宇佳, 潘春天. SMAP卫星海表盐度产品精度评定与全球海表盐度特征分析[J]. 海洋学研究, 2021, 39(3): 53-62. |
[3] | 陈莹, 赵辉, . 南海中西部叶绿素时空变化特征分析[J]. 海洋学研究, 2021, 39(3): 84-94. |
[4] | 周永远, 闫运伟, 邢小罡, 柴扉. 基于Argo实测流场数据对5套海洋模式产品中赤道太平洋中层流的评估[J]. 海洋学研究, 2020, 38(3): 1-9. |
[5] | 刘强, 施晓来, 吕海燕, 朱勇, 吴彬. 低盐度海水中重金属标准物质研制[J]. 海洋学研究, 2020, 38(3): 76-82. |
[6] | 刘松楠, 许东峰. 北太平洋热带水体积的年际变化及其变化机制[J]. 海洋学研究, 2020, 38(2): 1-8. |
[7] | 谢春虎, 徐苗苗, 曹莎莎, 张勇, 张春玲. 基于梯度依赖客观分析技术的全球Argo网格化数据集:构建及初步应用[J]. 海洋学研究, 2019, 37(4): 24-35. |
[8] | 钟佳丽, 李亚鹤, 郑明山, 臧茹, 徐年军. 不同模式高盐胁迫对浒苔光合生理及相关基因表达的影响[J]. 海洋学研究, 2019, 37(2): 72-80. |
[9] | 张小龙, 付东洋, 刘大召, 刘贝, 余果, 钟雅枫, 王焕. 基于EOF分析中西太平洋金枪鱼围网渔场的海洋环境[J]. 海洋学研究, 2019, 37(2): 81-94. |
[10] | 张莹, 谭艳春, 彭发定, 廖杏杰, 余昱昕. 基于EEMD和ARIMA的海温预测模型研究[J]. 海洋学研究, 2019, 37(1): 9-14. |
[11] | 陈建, 程锐, 刘娟, 王辉赞, 鲍森亮, 闫恒乾. 遥感海表盐度分析产品的有效分辨率研究[J]. 海洋学研究, 2018, 36(4): 17-27. |
[12] | 周孔霖, 杜萍, 寿鹿, 廖一波, 刘永叶, 黄伟. 温度骤降对大黄鱼Larimichthys crocea鱼卵与仔鱼的影响[J]. 海洋学研究, 2018, 36(4): 68-75. |
[13] | 董贵莹, 曹敏杰, 张丰, 杜震洪, 刘仁义, 吴森森. Argo资料协同管理方法研究[J]. 海洋学研究, 2017, 35(3): 1-8. |
[14] | 何欣, 孙国胜, 初凤友, 王春光, 晋瑞香, 李洋, 战乃臣, 刘世伟, 孙九达. 中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义[J]. 海洋学研究, 2017, 35(2): 23-32. |
[15] | 成奇, 潘连德. 温度对绿海龟心、肝、肾功能生化指标的影响[J]. 海洋学研究, 2016, 34(2): 93-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||