Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2): 26-39.DOI: 10.3969/j.issn.1001-909X.2024.02.003
Previous Articles Next Articles
KANG Zhengwu1,2, TU Qianguang3, YAN Yunwei4, XING Xiaogang1,2
Received:
2023-05-23
Revised:
2023-08-22
Online:
2024-06-15
Published:
2024-08-09
CLC Number:
KANG Zhengwu, TU Qianguang, YAN Yunwei, XING Xiaogang. Validation of sea surface temperature from the geostationary meteorological satellite Meteosat-8/SEVIRI over the Indian Ocean[J]. Journal of Marine Sciences, 2024, 42(2): 26-39.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.02.003
Fig.2 Histograms of SST (a), latitude (b) and longitude (c) distributions for paired M8 and three in-situ platforms (Grouped by 1 ℃ for SST and 3° for latitude and longitude,histograms normalized to a sum of 1.)
实测平台 | 匹配量/组 | 平均偏差/℃ | 均方根误差/℃ | 决定系数 |
---|---|---|---|---|
船只 | 124 089 | -0.10 | 1.03 | 0.96 |
漂流浮标 | 1 208 438 | -0.06 | 0.48 | 0.99 |
Argo浮标 | 8 067 | -0.10 | 0.53 | 0.99 |
Tab.1 Statistical table of SST errors between M8 and three in-situ platforms
实测平台 | 匹配量/组 | 平均偏差/℃ | 均方根误差/℃ | 决定系数 |
---|---|---|---|---|
船只 | 124 089 | -0.10 | 1.03 | 0.96 |
漂流浮标 | 1 208 438 | -0.06 | 0.48 | 0.99 |
Argo浮标 | 8 067 | -0.10 | 0.53 | 0.99 |
时段 | 匹配量/组 | 平均偏差/℃ | 偏差中位数/℃ | 均方根误差/℃ | 鲁棒标准差/℃ |
---|---|---|---|---|---|
夜间 | 470 166 | -0.08 | -0.05 | 0.47 | 0.41 |
白天 | 566 952 | -0.04 | 0.00 | 0.48 | 0.40 |
Tab.2 Statistics of SST errors between M8 and drifting buoys for night and day
时段 | 匹配量/组 | 平均偏差/℃ | 偏差中位数/℃ | 均方根误差/℃ | 鲁棒标准差/℃ |
---|---|---|---|---|---|
夜间 | 470 166 | -0.08 | -0.05 | 0.47 | 0.41 |
白天 | 566 952 | -0.04 | 0.00 | 0.48 | 0.40 |
Fig.7 Spatial distribution of matched number, deviation median, and Robust standard deviation of SST between M8 and drifting buoys during night and day
Fig.9 Variations in mean deviation, root mean square error and percentage of matched pairs between M8 and drifting buoys as functions of measured SST, secant of satellite zenith angle, longitude and latitude
[1] | MERCHANT C J, MINNETT P J, BEGGS H, et al. Global sea surface temperature[M]//Taking the temperature of the earth. Amsterdam: Elsevier, 2019: 5-55. |
[2] | 靳光强. 海水温度相似预报方法研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
JIN G Q. Research and realization of analogue prediction method for seawater temperature[D]. Harbin: Harbin Engineering University, 2018. | |
[3] | 罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报:自然科学版, 2012, 42(10):19-25. |
LUO X F, WEI H, YUAN C Y. Inter-annual and decadal variations of sea surface temperature in the Yellow Sea by satellite data[J]. Periodical of Ocean University of China, 2012, 42(10): 19-25. | |
[4] | VAN SCOY K A, MORRIS K P, ROBERTSON J E, et al. Thermal skin effect and the air-sea flux of carbon dioxide: A seasonal high-resolution estimate[J]. Global Biogeochemical Cycles, 1995, 9(2): 253-262. |
[5] | BELL M J, FORBES R M, HINES A. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting[J]. Journal of Marine Systems, 2000, 25(1): 1-22. |
[6] | MARTIN M J, HINES A, BELL M J. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 981-995. |
[7] | BENTAMY A, PIOLLÉ J F, GROUAZEL A, et al. Review and assessment of latent and sensible heat flux accuracy over the global oceans[J]. Remote Sensing of Environment, 2017, 201: 196-218. |
[8] | DONLON C J, MARTIN M, STARK J, et al. The operational sea surface temperature and sea ice analysis (OSTIA) system[J]. Remote Sensing of Environment, 2012, 116: 140-158. |
[9] | WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25(7): 823-842. |
[10] | TAYLOR P K, KENT E C. The accuracy of meteorological observations from voluntary observing ships: Present status and future requirements[R]. Marine Physics and Ocean Climate, 1999. https://eprints.soton.ac.uk/347754/. |
[11] | KEARNS E J, HANAFIN J A, EVANS R H, et al. An independent assessment of pathfinder AVHRR sea surface temperature accuracy using the marine atmosphere emitted radiance interferometer (MAERI)[J]. Bulletin of the American Meteorological Society, 2000, 81(7): 1525-1536. |
[12] | KUMAR A, MINNETT P, PODESTÁ G, et al. Analysis of Pathfinder SST algorithm for global and regional conditions[J]. Journal of Earth System Science, 2000, 109(4): 395-405. |
[13] | KILPATRICK K A, PODESTÁ G P, EVANS R. Overview of the NOAA/NASA advanced very high resolution radio-meter Pathfinder algorithm for sea surface temperature and associated matchup database[J]. Journal of Geophysical Research: Oceans, 2001, 106(C5): 9179-9197. |
[14] | CORLETT G K, BARTON I J, DONLON C J, et al. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets[J]. Advances in Space Research, 2006, 37(4): 764-769. |
[15] | 管磊, 陈锐, 贺明霞. ERS-1/ATSR海表温度在热带太平洋和西北太平洋的印证与分析[J]. 遥感学报, 2002, 6(1):63-69. |
GUAN L, CHEN R, HE M X. Validation of sea surface temperature from ERS-1/ATSR in the tropical and northwest Pacific[J]. Journal of Remote Sensing, 2002, 6(1): 63-69. | |
[16] | 范海燕, 滕军, 管磊, 等. NOAA/AVHRR卫星海表温度在西北太平洋的印证及分析[J]. 海洋预报, 2009, 26(2):7-14. |
FAN H Y, TENG J, GUAN L, et al. Validation of sea surface temperature from NOAA/AVHRR in the Northwest Pacific[J]. Marine Forecasts, 2009, 26(2): 7-14. | |
[17] | MATURI E, HARRIS A, MERCHANT C, et al. NOAA’s sea surface temperature products from operational geostationary satellites[J]. Bulletin of the American Meteorological Society, 2008, 89(12): 1877-1888. |
[18] | SCHMETZ J, PILI P, TJEMKES S, et al. An introduction to meteosat second generation (MSG)[J]. Bulletin of the American Meteorological Society, 2002, 83(7): 977-992. |
[19] | WOO H J, PARK K A, LI X F, et al. Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: Validation and error assessment[J]. Remote Sensing, 2018, 10(12): 1916. |
[20] | YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658. |
[21] | 王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验[J]. 应用气象学报, 2020, 31(6):729-739. |
WANG S J, CUI P, ZHANG P, et al. FY-3C/VIRR sea surface temperature products and quality validation[J]. Journal of Applied Meteorological Science, 2020, 31(6): 729-739. | |
[22] | 张贝贝. 环境星热红外影像海表温度反演及真实性检验[D]. 太原: 太原理工大学, 2022. |
ZHANG B B. Inversion and validation of HJ thermal infrared image sea surface temperature[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
[23] | HUANG B Y, THORNE P W, BANZON V F, et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20): 8179-8205. |
[24] | 门聪. 海洋一号B卫星海洋水色扫描仪(HY-1B/COCTS)海表温度反演与印证[D]. 青岛: 中国海洋大学, 2013. |
MEN C. Retrieval and validation of sea surface temperature from HY-1B/COCTS[D]. Qingdao: Ocean University of China, 2013. | |
[25] | LUO B K, MINNETT P J. Skin sea surface temperatures from the GOES-16 ABI validated with those of the shipborne M-AERI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 9902-9913. |
[26] | TU Q G, HAO Z Z. Validation of sea surface temperature derived from Himawari-8 by JAXA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 448-459. |
[27] | LE BORGNE P, LEGENDRE G, PÉRÉ S. Comparison of MSG/SEVIRI and drifting buoy derived diurnal warming estimates[J]. Remote Sensing of Environment, 2012, 124: 622-626. |
[28] | EMERY W J, BALDWIN D J, SCHLÜSSEL P, et al. Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements[J]. Journal of Geophysical Research: Oceans, 2001, 106(C2): 2387-2405. |
[29] | 李凝慧, 管磊. 西太平洋东印度洋Suomi-NPP/VIIRS海表温度印证[J]. 中国海洋大学学报:自然科学版, 2021, 51(8):115-122. |
LI N H, GUAN L. Validation of Suomi-NPP/VIIRS sea surface temperature in the western Pacific Ocean and eastern Indian Ocean[J]. Periodical of Ocean University of China, 2021, 51(8): 115-122. | |
[30] | XU F, IGNATOV A. Error characterization in iQuam SSTs using triple collocations with satellite measurements[J]. Geophysical Research Letters, 2016, 43(20): 10826-10834. |
[31] | MCCLAIN E P, PICHEL W G, WALTON C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587-11601. |
[32] | WALTON C C, PICHEL W G, SAPPER J F, et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27999-28012. |
[33] | NANO-ASCIONE N, PICART S S. Scientific validation report for the geostationary satellite sea surface temperature[R]. EUMETSAT, 2023. |
[34] | 毛志华, 张贤良, 刘建强, 等. HY1C/1D海表温度对Terra/Aqua产品的可替代性分析[J]. 海洋学报, 2023, 45(3):97-112. |
MAO Z H, ZHANG X L, LIU J Q, et al. Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua[J]. Haiyang Xuebao, 2023, 45(3): 97-112. |
[1] | WU Wenxiu, XU Xinwen, CHENG Shuxing, ZHAO Chunxu, GUO Youjun, SHEN Chunyan, YAN Yunrong. The influence mechanism of sea surface temperature on the resource change of Sthenoteuthis oualaniensis in Nansha sea area, South China Sea [J]. Journal of Marine Sciences, 2024, 42(1): 106-116. |
[2] | CHEN Ying, ZHAO Hui , . Spatio-temporal distribution of chlorophyll in the mid-western South China Sea [J]. Journal of Marine Sciences, 2021, 39(3): 84-94. |
[3] | JIANG Jin'gang, FENG Huiyun, ZHANG Yaguo, HE Xianqiang. Impact of spatial variability on the validation of ocean chlorophyll-a concentration remote sensing product [J]. Journal of Marine Sciences, 2021, 39(1): 9-19. |
[4] | WU Shouchang, HE Hailun, CHEN Meixiang, WANG Yuan, LIN Feilong. Decadal variation of isopycnal layer in the Indian Ocean based on WOA18 dataset [J]. Journal of Marine Sciences, 2020, 38(4): 26-39. |
[5] | MENG Ze, ZHOU Lei, QIN Jian-huang, FU Hong-li, WANG Guan-suo. Assessment of intraseasonal variabilities over Indian Ocean based on oceanic reanalysis datasets [J]. Journal of Marine Sciences, 2019, 37(4): 1-13. |
[6] | ZHANG Xiao-long, FU Dong-yang, LIU Da-zhao, LIU Bei, YU Guo, ZHONG Ya-feng, WANG Huan. Study on marine environment of the tuna purse seine fishery in Western and Central Pacific based on EOF analysis [J]. Journal of Marine Sciences, 2019, 37(2): 81-94. |
[7] | ZHANG Ying, TAN Yan-chun, PENG Fa-ding, LIAO Xing-jie, YU Yu-xin. Study on time series prediction model of sea surface temperature based on Ensemble Empirical Mode Decomposition and Autoregressive Integrated Moving Average [J]. Journal of Marine Sciences, 2019, 37(1): 9-14. |
[8] | YANG Chi, HAN Xi-qiu, WANG Ye-jian, LI Hong-lin, QIU Zhong-yan, WU Zhao-cai. Characteristics of the multibeam backscatter of Carlsberg Ridge(60°-61°E) and its indication on the tectonism and magmatism [J]. Journal of Marine Sciences, 2018, 36(3): 37-49. |
[9] | ZHANG Dong-ling, LU Xu, ZHANG Ming. Wyrtki Jet anomaly in May and its relationship with Asian tropical summer monsoon [J]. Journal of Marine Sciences, 2018, 36(1): 16-26. |
[10] | YANG Juan, LÜ Jing, ZHANG Rong-xin, SU Xin, SUN Dong. Distribution patterns of zooplankton community structure of the surface water from Southwest Indian Ocean in the summer of 2013 [J]. Journal of Marine Sciences, 2017, 35(3): 54-66. |
[11] | CHEN Xiao-dan , LIANG Chu-jin, DONG Chang-ming. Detection and flux estimation of hydrothermal plumes in the Longqi hydrothermal field in the Southwest Indian Ocean [J]. Journal of Marine Sciences, 2015, 33(4): 43-52. |
[12] | XIE Shang-wei, YANG Jun-yi, ZHANG Dong-sheng, WANG Chun-sheng. Phylogenetic diversity of nifH genes in the euphotic zone of the southwest Indian Ocean [J]. Journal of Marine Sciences, 2015, 33(3): 54-61. |
[13] | GAO Yan-qiu, SU Jie, LI Lei, LV Xian-qing. Application of adjoint assimilation method in a sea surface temperature prediction model:global optimization of the initial field [J]. Journal of Marine Sciences, 2015, 33(1): 1-8. |
[14] | WANG Xing-zhi, LI Chong-yin. Decadal variation of spring SST and wind field in the East China Sea Kuroshio [J]. Journal of Marine Sciences, 2013, 31(4): 10-16. |
[15] | LIN Li-ru, ZHAO Hui. Analysis on the relations between sea surface temperature and phy toplankton Chlorophyll-a in the South China Sea [J]. Journal of Marine Sciences, 2012, 30(4): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||