海洋学研究 ›› 2025, Vol. 43 ›› Issue (1): 107-121.DOI: 10.3969/j.issn.1001-909X.2025.01.010
朱论嘉1(), 屈科1,2,3,*(
), 王旭1, 王超1, 李天阔1
收稿日期:
2024-02-21
修回日期:
2024-04-06
出版日期:
2025-03-15
发布日期:
2025-05-30
通讯作者:
*屈科(1985—),男,副教授,主要从事计算水动力学、海岸工程、海洋/海岸多尺度流动方面的研究,E-mail: kqu@csust.edu.cn。
作者简介:
朱论嘉(2005—),男,广东省韶关市人,主要从事波浪水动力方面的研究,E-mail:1546163941@qq.com。
基金资助:
ZHU Lunjia1(), QU Ke1,2,3,*(
), WANG Xu1, WANG Chao1, LI Tiankuo1
Received:
2024-02-21
Revised:
2024-04-06
Online:
2025-03-15
Published:
2025-05-30
摘要:
全球变暖导致海平面上升,珊瑚礁等自然屏障抵御飓风和海啸等极端灾害的能力减弱,因此需在海岸附近布置海堤或淹没式人工结构物等人工屏障,以有效保护海岸。本文旨在通过数值模拟,探究淹没式人工结构物对孤立波在岸礁上的传播、变形等水动力特性的影响。采用非静压模型NHWAVE建立高精度波浪数值水槽,并通过实验数据验证模型,重点分析了入射波高、礁坪水深、人工结构物坡度、人工结构物峰宽及礁前斜坡坡度等因素对孤立波水动力特性的影响。研究表明,淹没式人工结构物会增大波浪反射系数,波浪与水体之间会形成漩涡结构,复杂的流场能有效耗散部分入射波能,从而减缓孤立波的波高和爬高。本文研究结果可为淹没式人工结构物的设计提供参考。
中图分类号:
朱论嘉, 屈科, 王旭, 王超, 李天阔. 淹没式人工结构物对孤立波岸礁水动力特性和岸滩爬高影响的数值模拟[J]. 海洋学研究, 2025, 43(1): 107-121.
ZHU Lunjia, QU Ke, WANG Xu, WANG Chao, LI Tiankuo. Numerical simulation of the influence of submerged artificial structures on hydrodynamic characteristics and run-up of solitary waves over shore reefs[J]. Journal of Marine Sciences, 2025, 43(1): 107-121.
工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 | 工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.063 45 | 0.040 | 1∶5 | D4 | 0.105 75 | 0.080 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A2 | 0.084 60 | 0.040 | 1∶5 | D5 | 0.105 75 | 0.100 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A3 | 0.105 75 | 0.040 | 1∶5 | E1 | 0.105 75 | 0.040 | 1∶0.25 | 0.040 | 0.360 | 1∶5 | |||
A4 | 0.126 90 | 0.040 | 1∶5 | E2 | 0.105 75 | 0.040 | 1∶0.75 | 0.040 | 0.360 | 1∶5 | |||
A5 | 0.148 05 | 0.040 | 1∶5 | E3 | 0.105 75 | 0.040 | 1∶1.75 | 0.040 | 0.360 | 1∶5 | |||
B1 | 0.063 45 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | E4 | 0.105 75 | 0.040 | 1∶2.25 | 0.040 | 0.360 | 1∶5 |
B2 | 0.084 60 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F1 | 0.105 75 | 0.040 | 1∶1.25 | 0.000 | 0.360 | 1∶5 |
B3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F2 | 0.105 75 | 0.040 | 1∶1.25 | 0.020 | 0.360 | 1∶5 |
B4 | 0.126 90 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F3 | 0.105 75 | 0.040 | 1∶1.25 | 0.060 | 0.360 | 1∶5 |
B5 | 0.148 05 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F4 | 0.105 75 | 0.040 | 1∶1.25 | 0.080 | 0.360 | 1∶5 |
C1 | 0.105 75 | 0.000 | 1∶5 | G1 | 0.105 75 | 0.040 | 1∶3 | ||||||
C2 | 0.105 75 | 0.020 | 1∶5 | G2 | 0.105 75 | 0.040 | 1∶4 | ||||||
C3 | 0.105 75 | 0.060 | 1∶5 | G3 | 0.105 75 | 0.040 | 1∶6 | ||||||
C4 | 0.105 75 | 0.080 | 1∶5 | G4 | 0.105 75 | 0.040 | 1∶7 | ||||||
C5 | 0.105 75 | 0.100 | 1∶5 | H1 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶3 | |||
D1 | 0.105 75 | 0.000 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H2 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶4 |
D2 | 0.105 75 | 0.020 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶6 |
D3 | 0.105 75 | 0.060 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H4 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶7 |
表1 数值模拟工况表
Tab.1 Parameter setup of numerical simulation
工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 | 工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.063 45 | 0.040 | 1∶5 | D4 | 0.105 75 | 0.080 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A2 | 0.084 60 | 0.040 | 1∶5 | D5 | 0.105 75 | 0.100 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A3 | 0.105 75 | 0.040 | 1∶5 | E1 | 0.105 75 | 0.040 | 1∶0.25 | 0.040 | 0.360 | 1∶5 | |||
A4 | 0.126 90 | 0.040 | 1∶5 | E2 | 0.105 75 | 0.040 | 1∶0.75 | 0.040 | 0.360 | 1∶5 | |||
A5 | 0.148 05 | 0.040 | 1∶5 | E3 | 0.105 75 | 0.040 | 1∶1.75 | 0.040 | 0.360 | 1∶5 | |||
B1 | 0.063 45 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | E4 | 0.105 75 | 0.040 | 1∶2.25 | 0.040 | 0.360 | 1∶5 |
B2 | 0.084 60 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F1 | 0.105 75 | 0.040 | 1∶1.25 | 0.000 | 0.360 | 1∶5 |
B3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F2 | 0.105 75 | 0.040 | 1∶1.25 | 0.020 | 0.360 | 1∶5 |
B4 | 0.126 90 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F3 | 0.105 75 | 0.040 | 1∶1.25 | 0.060 | 0.360 | 1∶5 |
B5 | 0.148 05 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F4 | 0.105 75 | 0.040 | 1∶1.25 | 0.080 | 0.360 | 1∶5 |
C1 | 0.105 75 | 0.000 | 1∶5 | G1 | 0.105 75 | 0.040 | 1∶3 | ||||||
C2 | 0.105 75 | 0.020 | 1∶5 | G2 | 0.105 75 | 0.040 | 1∶4 | ||||||
C3 | 0.105 75 | 0.060 | 1∶5 | G3 | 0.105 75 | 0.040 | 1∶6 | ||||||
C4 | 0.105 75 | 0.080 | 1∶5 | G4 | 0.105 75 | 0.040 | 1∶7 | ||||||
C5 | 0.105 75 | 0.100 | 1∶5 | H1 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶3 | |||
D1 | 0.105 75 | 0.000 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H2 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶4 |
D2 | 0.105 75 | 0.020 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶6 |
D3 | 0.105 75 | 0.060 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H4 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶7 |
图8 有、无人工结构物岸礁不同位置测点处自由液面的时间序列对比
Fig.8 Comparative time series of water elevation at different wave gauges on shore reefs with and without artificial structure
图12 有、无人工结构物时不同入射波高下最大波高的沿程分布
Fig.12 Along-track distributions of maximum wave heights along shore reefs with and without artificial structure under different incident wave heights
图14 有、无人工结构物时不同礁坪水深下最大波高的沿程分布
Fig.14 Along-track distributions of maximum wave heights along shore reefs with and without artificial structure under different reef flat water depths
图16 不同人工结构物坡度下最大波高的沿程分布(a)和人工结构物附近局部波高最大降幅的变化(b)
Fig.16 Along-track distribution of maximum wave heights under different artificial structure slopes (a) and variation of maximum drop in local wave height in the vicinity of artificial structure (b)
图17 不同人工结构物峰宽下最大波高的沿程分布(a)和人工结构物附近局部波高最大降幅的变化(b)
Fig.17 Along-track distribution of maximum wave heights under different peak widths of artificial structure (a) and variation of maximum local wave height drop near artificial structure (b)
图18 有、无人工结构物时不同礁前斜坡坡度下最大波高的沿程分布
Fig.18 Along-track distribution of maximum wave heights along shore reef with and without artificial structure under different reef front slope gradients
图19 不同礁前斜坡坡度下人工结构物附近局部波高最大降幅的变化
Fig.19 Variation of maximum drop in local wave height near artificial structure with different reef front slope gradients
图20 有、无人工结构物时孤立波反射系数CR在不同工况条件下的变化
Fig.20 Variations of the reflection coefficient CR under different operating conditions on shore reefs with and without artificial structure
图21 有、无人工结构物时波浪最大爬高在不同工况条件下的变化
Fig.21 Variation of the maximum wave run-up Rup,max under different operating conditions on shore reefs with and without artificial structure
[1] | SYNOLAKIS C E, BERNARD E N. Tsunami science before and beyond Boxing day 2004[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1845): 2231-2265. |
[2] | MORI N, TAKAHASHI T. The Tohoku Earthquake Tsunami Joint Survey Group. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami[J]. Coastal Engi-neering Journal, 2012, 54(1): 1250001. |
[3] |
TITOV V, RABINOVICH A B, MOFJELD H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045-2048.
PMID |
[4] | GOURLAY M R. Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealised two dimensional horizontal reef[J]. Coastal Engineering, 1996, 27(3/4): 161-193. |
[5] | YAO Y, JIA M J, JIANG C B, et al. Laboratory study of wave processes over fringing reefs with a reef-flat excavation pit[J]. Coastal Engineering, 2020, 158: 103700. |
[6] | HARDY T A, YOUNG I R. Field study of wave attenuation on an offshore coral reef[J]. Journal of Geophysical Research: Oceans, 1996, 101(C6): 14311-14326. |
[7] | LUGO-FERNÁNDEZ A, HERNÁNDEZ-ÁVILA M L, ROBERTS H H. Wave-energy distribution and hurricane effects on Margarita Reef, southwestern Puerto Rico[J]. Coral Reefs, 1994, 13(1): 21-32. |
[8] | GRADY A E, MOORE L J, STORLAZZI C D, et al. The influence of sea level rise and changes in fringing reef morphology on gradients in alongshore sediment transport[J]. Geophysical Research Letters, 2013, 40(12): 3096-3101. |
[9] | FARHADI A, EMDAD H, RAD E G. On the numerical simulation of the nonbreaking solitary waves run up on sloping beaches[J]. Computers & Mathematics with Applications, 2015, 70(9): 2270-2281. |
[10] | LIU P L, AL-BANAA K. Solitary wave runup and force on a vertical barrier[J]. Journal of Fluid Mechanics, 2004, 505: 225-233. |
[11] | 张金牛, 吴卫, 刘桦, 等. 孤立波作用下斜坡堤越浪量的实验研究[J]. 水动力学研究与进展A辑, 2014, 29(6):656-662. |
ZHANG J N, WU W, LIU H, et al. An experimental study on overtopping of solitary wave against a slope dike[J]. Chinese Journal of Hydrodynamics, 2014, 29(6): 656-662. | |
[12] |
张良斌, 屈科, 黄竞萱, 等. 风对孤立波海堤越浪特性影响的数值模拟研究[J]. 海洋学研究, 2023, 41(4):32-45.
DOI |
ZHANG L B, QU K, HUANG J X, et al. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall[J]. Journal of Marine Sciences, 2023, 41(4): 32-45.
DOI |
|
[13] | CHANG K G, HSU T J, LIU P L. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part I. Solitary waves[J]. Coastal Engineering, 2001, 44(1): 13-36. |
[14] | LIN C, HO T C, CHANG S C, et al. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate[J]. International Journal of Heat and Fluid Flow, 2005, 26(6): 894-904. |
[15] | 韩新宇, 董胜, 崔俊男. 潜堤上孤立波传播的格子Boltzmann法数值模拟[J]. 工程力学, 2019, 36(9):247-256. |
HAN X Y, DONG S, CUI J N. Numerical study of the interaction between a solitary wave and submerge breakwater based on lattice Boltzmann method[J]. Engineering Mechanics, 2019, 36(9): 247-256. | |
[16] | TOUHAMI H E, KHELLAF M C. Laboratory study on effects of submerged obstacles on tsunami wave and run-up[J]. Natural Hazards, 2017, 87(2): 757-771. |
[17] | YAO Y, HE F, TANG Z J, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142-155. |
[18] | 肖理, 房克照, 孙家文, 等. 孤立波对礁坪上直墙冲击试验和RANS数值模拟[J]. 海洋工程, 2021, 39(4):86-95. |
XIAO L, FANG K Z, SUN J W, et al. Experiment and RANS simulation of the impact of solitary wave on a straight wall mounted on reef flat[J]. The Ocean Engineering, 2021, 39(4): 86-95. | |
[19] | FU R L, MA Y X, DONG G H. Investigation of wave-driven currents and statistical moments of irregular waves over a one dimensional horizontal fringing reef[J]. Applied Ocean Research, 2021, 112: 102690. |
[20] | 王旭, 屈科, 门佳. 人工采砂坑对规则波岸礁水动力特性的影响研究[J]. 海洋通报, 2024, 43(1):69-85. |
WANG X, QU K, MEN J. Study on the effects of artificial excavation pits on the hydrodynamic characteristics of regular wave over fringing reef[J]. Marine Science Bulletin, 2024, 43(1): 69-85. | |
[21] | 王旭, 屈科, 门佳. 透水珊瑚岸礁亚重力波水动力特性数值研究[J]. 海洋学报, 2023, 45(9):152-167. |
WANG X, QU K, MEN J. Numerical study on infragravity wave hydrodynamics of permeable fringing reef[J]. Haiyang Xuebao, 2023, 45(9): 152-167. | |
[22] | AI C F, MA Y X, YUAN C F, et al. Development and assessment of semi-implicit nonhydrostatic models for surface water waves[J]. Ocean Modelling, 2019, 144: 101489. |
[23] | MA G F, SHI F Y, KIRBY J T. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes[J]. Ocean Modelling, 2012, 43: 22-35. |
[24] | RODI W. Examples of calculation methods for flow and mixing in stratified fluids[J]. Journal of Geophysical Research: Oceans, 1987, 92(C5): 5305-5328. |
[25] | LIU W J, SHAO K Q, NING Y. A study of the maximum momentum flux in the solitary wave run-up zone over back-reef slopes based on a Boussinesq model[J]. Journal of Marine Science and Engineering, 2019, 7(4): 109. |
[26] | TOUHAMI H E, BOUMARAF A, KHELLAF M C. Experimental study of low-crested structures’ porosity effect on tsunami waves and run-up[J]. Journal of Ocean Engineering and Marine Energy, 2022, 8(3): 369-380. |
[1] | 王智弘, 屈科, 杨元平, 王旭, 高榕泽. 卷积神经网络方法在涌潮水动力特性演变中的应用研究[J]. 海洋学研究, 2024, 42(3): 131-141. |
[2] | 金晨昕, 崔子健, 梁楚进, 蔺飞龙, 陈振涛. 内孤立波速度-高斯函数模型构建与评估[J]. 海洋学研究, 2024, 42(2): 55-61. |
[3] | 吕曌, 伍志元, 蒋昌波, 张浩键, 高凯, 颜仁. 基于海气耦合模式的超强台风“山竹”数值模拟[J]. 海洋学研究, 2023, 41(4): 21-31. |
[4] | 张良斌, 屈科, 黄竞萱, 王旭, 虢磊. 风对孤立波海堤越浪特性影响的数值模拟研究[J]. 海洋学研究, 2023, 41(4): 32-45. |
[5] | 张宸浩, 张明亮, 柴崇顼, 等. 基于OpenFOAM波浪—植物相互作用的数值模拟研究[J]. 海洋学研究, 2022, 40(1): 42-52. |
[6] | 徐浩波, 管清胜, 许明珠, 刁云云, . 蛇纹岩化作用对超慢速洋中脊拆离断层发育的影响[J]. 海洋学研究, 2021, 39(3): 21-30. |
[7] | 崔子健, 梁楚进, 蔺飞龙, 金魏芳, 丁涛, 王隽. 安达曼海内孤立波的潜标观测分析研究[J]. 海洋学研究, 2020, 38(4): 16-25. |
[8] | 周炜, 宣基亮, 黄大吉. 桑沟湾邻近海域岬角潮余流涡对及其产生机理[J]. 海洋学研究, 2020, 38(3): 10-20. |
[9] | 张佳丽, 张安民, 孙朝辉, 张学峰, 张亮*1. 抗差Vondrak滤波方法在内孤立波提取中的应用研究[J]. 海洋学研究, 2020, 38(1): 1-8. |
[10] | 伍志元, 蒋昌波, 何智勇, 陈杰, 邓斌, 谢振东. 大气-海浪耦合模式及其在理想台风模拟中的应用研究[J]. 海洋学研究, 2019, 37(2): 9-15. |
[11] | 苏银秋, 潘国富, 俞亮亮, 杨万康. 海湾水交换对取排水工程的响应[J]. 海洋学研究, 2018, 36(4): 76-83. |
[12] | 张拂坤, 邹川玲, 刘淑静, 徐显, 刘伟. 晋江海域海水淡化排海盐度场三维数值模拟[J]. 海洋学研究, 2018, 36(2): 12-18. |
[13] | 黄宗伟, 邓斌, 蒋昌波, 刘晓建. 环抱式港区水体交换能力数值研究——以闸坡渔港为例[J]. 海洋学研究, 2018, 36(1): 66-74. |
[14] | 黄潘阳, 来向华, 季有俊, 胡涛骏, 王友忠. 舟山东港新城溃堤洪水演进数值模拟[J]. 海洋学研究, 2017, 35(4): 61-68. |
[15] | 邹逸航, 马旭林, 姜胜, 何海伦, 郭欢. COSMIC掩星资料同化对台风“天兔”预报影响的试验[J]. 海洋学研究, 2017, 35(3): 9-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||