海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 131-141.DOI: 10.3969/j.issn.1001-909X.2024.03.011

• 研究论文 • 上一篇    下一篇

卷积神经网络方法在涌潮水动力特性演变中的应用研究

王智弘1(), 屈科1,3,4,*(), 杨元平2, 王旭1,3, 高榕泽1   

  1. 1.长沙理工大学 水利与环境工程学院,湖南 长沙 410114
    2.浙江省水利河口研究院,浙江 杭州 310017
    3.洞庭湖水环境治理与生态修复湖南省重点实验室,湖南 长沙 410114
    4.水沙科学与水灾害防治湖南省重点实验室,湖南 长沙 410114
  • 收稿日期:2023-10-12 修回日期:2024-02-26 出版日期:2024-09-15 发布日期:2024-11-25
  • 通讯作者: *屈科(1985—),男,副教授,主要从事计算流体力学、海岸工程、海洋工程等方面的研究,E-mail:kqu@csust.edu.cn
  • 作者简介:王智弘(2003—),男,湖南省娄底市人,主要从事波浪水动力方面的研究,E-mail: 202104330130@stu.csust.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFC3103601);浙江省河口海岸重点实验室开放基金项目(ZIHE21009);浙江省自然科学基金项目(LY22E090007);浙江省水利厅科技计划项目(RC2020);湖南省省级大学生创新创业训练计划项目(S202310536108)

Application of convolutional neural network method in evolution of tidal bore hydrodynamic characteristics

WANG Zhihong1(), QU Ke1,3,4,*(), YANG Yuanping2, WANG Xu1,3, GAO Rongze1   

  1. 1. School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
    2. Zhejiang Water Conservancy and Estuary Research Institute, Hangzhou 310017, China
    3. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
    4. Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
  • Received:2023-10-12 Revised:2024-02-26 Online:2024-09-15 Published:2024-11-25

摘要:

该文基于开源软件OpenFOAM求解雷诺平均的Navier-Stokes方程,实现了对于波状涌潮(Fr=1.2~1.3)的数值模拟,并与物理实验数据比较,验证了数值模拟的准确性。使用CONV1D卷积神经网络模型对数值模拟数据进行了学习,预测出在具有斜坡地形上的涌潮水动力发展过程。对比涌潮到达x=30.0 m 测点处的用时和该测点的最高水位的模型预测结果与数值模拟结果可知:到达用时的平均相对误差为2.28%,最高水位的平均相对误差为3.73%。较小的相对误差证明了CONV1D模型的准确性。该文对于涌潮的水动力过程模拟、与涌潮相关的灾害预警以及初生涌潮未来发展趋势研究都具有一定意义。

关键词: 涌潮, 钱塘江, OpenFOAM, 水动力过程, 斜坡地形, 卷积神经网络, CONV1D, 数值模拟

Abstract:

The open source software OpenFOAM was used to solve the Reynolds-averaged Navier-Stokes equations, numerical simulations of wave surges (Fr=1.2~1.3) was implemented, and the results were compared with physical experimental data to verify the accuracy of the numerical simulations. The data was studied based on the CONV1D convolutional neural network model to predict the dynamic development process of tidal bore on terrain with slope. Comparison of the model prediction and numerical simulation results for the arrival time and the maximum water level of the tidal bore at x=30.0 m shows that the average relative error in the arrival time is 2.28%, and the average relative error in the maximum water level is 3.73%. The smaller relative error proves the accuracy of the CONV1D model. This result has certain research significance for the simulation of the hydrodynamic process of tidal bore, early warning of tidal bore disasters, and the study of future development trends of primary tidal bore.

Key words: tidal bore, Qiantang River, OpenFOAM, hydrodynamic process, slope, convolutional neural network, CONV1D, numerical simulation

中图分类号: