海洋学研究 ›› 2024, Vol. 42 ›› Issue (2): 104-112.DOI: 10.3969/j.issn.1001-909X.2024.02.010
许绪成1, 余星1,2,*, 胡航1,2, 何虎1, 余娅娜1
收稿日期:
2023-05-18
修回日期:
2023-06-25
出版日期:
2024-06-15
发布日期:
2024-08-09
通讯作者:
余星
作者简介:
*余星 (1981—),男,研究员,主要从事岩石大地构造学研究,E-mail: yuxing@sio.org.cn。基金资助:
XU Xucheng1, YU Xing1,2,*, HU Hang1,2, HE Hu1, YU Ya’na1
Received:
2023-05-18
Revised:
2023-06-25
Online:
2024-06-15
Published:
2024-08-09
Contact:
YU Xing
摘要:
深海橄榄岩在海底洋中脊、俯冲带和大陆边缘等构造环境中广泛分布,并普遍经历后期蚀变,其中蛇纹石化作用是最主要的蚀变类型。蛇纹石化是指橄榄岩中富镁铁矿物,如橄榄石和辉石,被蛇纹石、磁铁矿、水镁石等一系列次生矿物所取代的化学过程。蛇纹石化反应条件与热液循环、成矿物质迁移等具有密切的联系,对指示热液成矿作用具有重要意义。传统的岩石矿物学、地球化学方法在反映蛇纹石化条件时具有多解性和不确定性,不同矿物或不同化学指标可能指示不同的结果。氧同位素在自然界普遍存在,氧同位素示踪法具有适用范围广、容易比对、支持原位微区分析等优点,可以清晰地反映矿物或岩石-流体体系的反应条件和过程。该文主要综述了氧同位素测温法的原理、深海橄榄岩蛇纹石化过程、氧同位素测温法在深海橄榄岩蛇纹石化过程中的应用案例、蛇纹石氧同位素组成变化的影响因素以及氧同位素测温法的优势和局限性等问题,为后续更深入地了解深海橄榄岩蛇纹石化过程提供参考。
中图分类号:
许绪成, 余星, 胡航, 何虎, 余娅娜. 深海橄榄岩蛇纹石化温度条件的氧同位素约束[J]. 海洋学研究, 2024, 42(2): 104-112.
XU Xucheng, YU Xing, HU Hang, HE Hu, YU Ya’na. Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites[J]. Journal of Marine Sciences, 2024, 42(2): 104-112.
图1 蛇纹石δ18O值随反应温度变化曲线 (反应曲线为不同流体端元的模拟结果,其中大西洋洋底流体为大西洋中脊23°N Kane地区的热液流体[48]。分馏公式来自SACCOCIA等[12] 。)
Fig.1 The change curve of δ18O value of serpentine with temperature (The curve is generated based on different fluid endmembers, in which the Atlantic Ocean fluid is from the Kane area at the Mid-Atlantic Ridge 23°N[48]. The fractionation formula is from SACCOCIA et al[12].)
矿物 种类 | δ18O/‰ | 形成温度 | |
---|---|---|---|
温度范围/℃ | 参考文献 | ||
蛇纹石 | 1.9~9.6 (106) | 300~320 (利蛇纹石) 320~550 (叶蛇纹石) | 文献[ |
磁铁矿 | -10.2~4.75 (92) | 400~450 | 文献[ |
滑石 | 3.0~4.7 (11) | 272~323 | 文献[ |
透闪石 | 5.2~8.0 (8) | 350~650 | 文献[ |
方解石 | 12.67~34.1 (103) | 2~134 | 文献[ |
绿泥石 | 1.12~11.7 (24) | 169~207 | 文献[ |
表1 蛇纹石化橄榄岩次生矿物氧同位素比值和形成温度
Tab.1 Oxygen isotope ratios of the secondary minerals in serpentinized peridotites and their formation temperatures
矿物 种类 | δ18O/‰ | 形成温度 | |
---|---|---|---|
温度范围/℃ | 参考文献 | ||
蛇纹石 | 1.9~9.6 (106) | 300~320 (利蛇纹石) 320~550 (叶蛇纹石) | 文献[ |
磁铁矿 | -10.2~4.75 (92) | 400~450 | 文献[ |
滑石 | 3.0~4.7 (11) | 272~323 | 文献[ |
透闪石 | 5.2~8.0 (8) | 350~650 | 文献[ |
方解石 | 12.67~34.1 (103) | 2~134 | 文献[ |
绿泥石 | 1.12~11.7 (24) | 169~207 | 文献[ |
[1] | ALT J C, SHANKS III W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653. |
[2] | MÉVEL C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Géoscience, 2003, 335(10/11): 825-852. |
[3] | KELEMEN P B, MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17295-17300. |
[4] | BACH W, KLEIN F. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling[J]. Lithos, 2009, 112(1/2): 103-117. |
[5] | SCICCHITANO M R, LAFAY R, VALLEY J W, et al. Protracted hydrothermal alteration recorded at the microscale in the Chenaillet ophicarbonates(Western Alps):Insights from in situ δ18O thermometry in serpentine,carbonate and magnetite[J]. Geochimica et Cosmochimica Acta, 2022, 318: 144-164. |
[6] | BARNES J D, PAULICK H, SHARP Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209)[J]. Lithos, 2009, 110(1/2/3/4): 83-94. |
[7] | LITTLER K, RÖHL U, WESTERHOLD T, et al. A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene-Early Eocene climate and carbon cycling[J]. Earth and Planetary Science Letters, 2014, 401: 18-30. |
[8] | DE VLEESCHOUWER D, VAHLENKAMP M, CRUCIFIX M, et al. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y.[J]. Geology, 2017, 45(4): 375-378. |
[9] | NOËL J, GODARD M, OLIOT E, et al. Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)[J]. Lithos, 2018, 323: 218-237. |
[10] | TAYLOR H P Jr. Water/rock interactions and the origin of H2O in granitic batholiths[J]. Journal of the Geological Society, 1977, 133(6): 509-558. |
[11] | AGRINIER P, CANNAT M. Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23°N)[M] //KARSONJ A, CANNATM, MILLERD J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 153, 1997: 381-388. |
[12] | SACCOCIA P J, SEEWALD J S, SHANKS III W C. Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 ℃, 50MPa[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6789-6804. |
[13] | DICK H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[M] //SAUNDERSA D, NORRYM J. Magmatism in the ocean basins. London: Geological Society Special Publications, 1989: 71-105. |
[14] | 余星, 初凤友, 陈汉林, 等. 深海橄榄岩蛇纹石化作用的研究进展[J]. 海洋学研究, 2011, 29(1):96-103. |
YU X, CHU F Y, CHEN H L, et al. Advances in research of abyssal peridotite serpentinization[J]. Journal of Marine Sciences, 2011, 29(1): 96-103. | |
[15] | 章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4):1063-1080. |
ZHANG Y Z, JIANG Z X, LI S Z, et al. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration[J]. Acta Petrologica Sinica, 2022, 38(4): 1063-1080. | |
[16] | BACH W, PAULICK H, GARRIDO C J, et al. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)[J]. Geophysical Research Letters, 2006, 33(13): L13306. |
[17] | MALVOISIN B, BRUNET F, CARLUT J, et al. Serpenti-nization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04102. |
[18] | CANNAT M, MANGENEY A, ONDRÉAS H, et al. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley[J]. Geochemistry Geophysics Geosystems, 2013, 14(4): 996-1011. |
[19] | HARVEY J, SAVOV I P, AGOSTINI S, et al. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209[J]. Geochimica et Cosmochimica Acta, 2014, 126: 30-48. |
[20] | FACER J, DOWNES H, BEARD A. In situ serpentinization and hydrous fluid metasomatism in spinel dunite xenoliths from the Bearpaw Mountains, Montana, USA[J]. Journal of Petrology, 2009, 50(8): 1443-1475. |
[21] | GUILLOT S, HATTORI K. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life[J]. Elements, 2013, 9(2): 95-98. |
[22] | CORTIADE N, DELACOUR A, GUILLAUME D, et al. Serpentinization of mantle xenoliths in Kerguelen archipelago: A first petrographic and geochemical study[J]. Lithos, 2022, 428/429: 106796. |
[23] | DESCHAMPS F, GODARD M, GUILLOT S, et al. Geoche-mistry of subduction zone serpentinites: A review[J]. Lithos, 2013, 178: 96-127. |
[24] | EVANS B W, HATTORI K, BARONNET A. Serpentinite: What, why, where?[J]. Elements, 2013, 9(2): 99-106. |
[25] | BOSCHI C, DINI A, BANESCHI I, et al. Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany)[J]. Lithos, 2017, 288/289: 264-281. |
[26] | KELEMEN P B, MATTER J, STREIT E E, et al. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 545-576. |
[27] | STRAUB S M, LAYNE G D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones[J]. Geochimica et Cosmochimica Acta, 2003, 67(21): 4179-4203. |
[28] | HATTORI K H, GUILLOT S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge[J]. Geology, 2003, 31(6): 525-528. |
[29] | RUDNICK R L, GAO S. Composition of the continental crust[M] //HOLLANDH D, TUREKIANK K. Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[30] | LI C S, RIPLEY E M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineralium Deposita, 2005, 40(2): 218-230. |
[31] | TULI J K. Nuclear wallet cards[M]. [S.l.]: Brookhaven National Laboratory, 1995. |
[32] | 刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5):1-28. |
LIU Y. Theory and computational methods of non-traditional stable isotope fractionation[J]. Earth Science Frontiers, 2015, 22(5): 1-28. | |
[33] | 韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2003. |
HAN Y W, MA Z D. Geochemistry[M]. Beijing: Geological Publishing House, 2003. | |
[34] | HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 1997. |
[35] | CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. |
[36] | HAYES J M. Practice and principles of isotopic measurements in organic geochemistry[Z/OL]. [2023-03-25]. https://web.gps.caltech.edu/-als/research-articles/other_stuff/hayespnp.pdf. |
[37] | WENNER D B, TAYLOR H P. Temperatures of serpenti-nization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite[J]. Contributions to Mineralogy and Petrology, 1971, 32(3): 165-185. |
[38] | ZHENG Y F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 247-263. |
[39] | FRÜH-GREEN G L, PLAS A, LÉCUYER C. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(site 895)[M] //MÉVELC, GILLISK M, ALLANJ F, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol.147, 1996: 255-291. |
[40] | SCHWARZENBACH E M, VOGEL M, FRÜH G G L, et al. Serpentinization, carbonation, and metasomatism of ultramafic sequences in the northern Apennine ophiolite (NW Italy)[J]. Journal of Geophysical Research Solid Earth, 2021, 126(5): e2020JB020619. |
[41] | GIL G, BOROWSKI M P, BARNES J D, et al. Formation of serpentinite-hosted talc in a continental crust setting: Petrographic, mineralogical, geochemical, and O, H and Cl isotope study of the Gilów deposit, Góry Sowie Massif (SW Poland)[J]. Ore Geology Reviews, 2022, 146:104926. |
[42] | SCICCHITANO M R, SPICUZZA M J, ELLISON E T, et al. In situ oxygen isotope determination in serpentine minerals by SIMS: Addressing matrix effects and providing new insights on serpentinisation at hole BA1B (Samail ophiolite, Oman)[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 161-187. |
[43] | SCICCHITANO M R, DE OBESO J C, BLUM T B, et al. An empirical calibration of the serpentine-water oxygen isotope fractionation at T=25-100℃[J]. Geochimica et Cosmochimica Acta, 2023, 346: 192-206. |
[44] | TROCH J, AFFOLTER S, HARRIS C, et al. Oxygen and hydrogen isotope analysis of experimentally generated magmatic and metamorphic aqueous fluids using laser spectroscopy (WS-CRDS)[J]. Chemical Geology, 2021, 584: 120487. |
[45] | ROUMÉJON S, WILLIAMS M J, FRÜH G G L. In-situ oxygen isotope analyses in serpentine minerals: Constraints on serpentinization during tectonic exhumation at slow- and ultraslow-spreading ridges[J]. Lithos, 2018, 323: 156-173. |
[46] | SNOW E S, CAMPBELL P M. AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties[J]. Science, 1995, 270(5242): 1639-1641. |
[47] | EILER J, STOLPER E M, MCCANTA M C. Intra-and intercrystalline oxygen isotope variations in minerals from basalts and peridotites[J]. Journal of Petrology, 2011, 52(7/8): 1393-1413. |
[48] | CAMPBELL A C, PALMER M R, KLINKHAMMER G P, et al. Chemistry of hot springs on the Mid-Atlantic Ridge[J]. Nature, 1988, 335(6190): 514-519. |
[49] | SCHMIDT G A, BIGG G R, ROHLING E J. Global seawater oxygen-18 database[EB/OL]. [2023-04-10]. http://data.giss.nasa.gov/o18data/. |
[50] | 姜兆霞, 刘青松. 赤铁矿的定量化及其气候意义[J]. 第四纪研究, 2016, 36(3):676-689. |
JIANG Z X, LIU Q S. Quantification of hematite and its climatic significances[J]. Quaternary Sciences, 2016, 36(3): 676-689. | |
[51] | 李彬, 袁道先, 林玉石, 等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学:D辑, 2000, 30(1):81-87. |
LI B, YUAN D X, LIN Y S, et al. Study on oxygen and carbon isotopes of precipitation, cave dripping and modern cave carbonate in Guilin area and its environmental significance[J]. Science in China: Series D, 2000, 30(1): 81-87. | |
[52] | 程海, 艾思本, 王先锋, 等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2):157-163. |
CHENG H, AI S B, WANG X F, et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Sciences, 2005, 25(2): 157-163. | |
[53] | 毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2):121-128. |
MAO J W, HE Y, DING T P. Mantle fluids involved in metallogenesis of Jiaodong (east Shandong) gold district: Evidence of C, O and H isotopes[J]. Mineral Deposits, 2002, 21(2): 121-128. | |
[54] | 郑永飞, 傅斌, 肖益林, 等. 大别山榴辉岩氢氧同位素组成及其地球动力学意义[J]. 中国科学:D辑, 1997, 27(2):121-126. |
ZHENG Y F, FU B, XIAO Y L, et al. Hydrogen and oxygen isotopic composition of eclogite in Dabie Mountain and its geodynamic significance[J]. Science in China: Series D, 1997, 27(2): 121-126. | |
[55] | 郑永飞, 陈福坤, 龚冰, 等. 大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2):110-119. |
ZHENG Y F, CHEN F K, GONG B, et al. Protolith properties of ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Evidence from zircon oxygen isotopes and U-Pb ages[J]. Chinese Science Bulletin, 2003, 48(2): 110-119. | |
[56] | SPICUZZA M J, VALLEY J W, KOHN M J, et al. The rapid heating, defocused beam technique: A CO2-laser-based method for highly precise and accurate determination of δ18O values of quartz[J]. Chemical Geology, 1998, 144(3/4): 195-203. |
[57] | FIEBIG J, WIECHERT U, RUMBLE D III, et al. High-precision in situ oxygen isotope analysis of quartz using an ArF laser[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 687-702. |
[58] | CHAMBERLAIN C P, CONRAD M E. Oxygen-isotope zoning in garnet: A record of volatile transport[J]. Geochi-mica et Cosmochimica Acta, 1993, 57(11): 2613-2629. |
[59] | VALLEY J W, CHIARENZELLI J R, MCLELLAND J M. Oxygen isotope geochemistry of zircon[J]. Earth and Planetary Science Letters, 1994, 126(4): 187-206. |
[60] | EILER J M, FARLEY K A, VALLEY J W, et al. Oxygen isotope variations in ocean island basalt phenocrysts[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2281-2293. |
[61] | CRESPIN J, ALEXANDRE A, SYLVESTRE F, et al. IR laser extraction technique applied to oxygen isotope analysis of small biogenic silica samples[J]. Analytical Chemistry, 2008, 80(7): 2372-2378. |
[62] | DEKOV V M, CUADROS J, SHANKS W C, et al. Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194. |
[63] | JENKINS D M. Stability and composition relations of calcic amphiboles in ultramafic rocks[J]. Contributions to Mineralogy and Petrology, 1983, 83: 375-384. |
[64] | CHERNOSKY J V, BERMAN R G, JENKINS D M. The stability of tremolite: New experimental data and a thermodynamic assessment[J]. American Mineralogist, 1998, 83(7/8): 726-739. |
[65] | EVANS B W. The serpentinite multisystem revisited: Chrysotile is metastable[J]. International Geology Review, 2004, 46(6): 479-506. |
[66] | EVANS B W, GHIORSO M S, KUEHNER S M. Thermo-dynamic properties of tremolite: A correction and some comments[J]. American Mineralogist, 2000, 85(3/4): 466-472. |
[67] | CLUZEL D, BOULVAIS P, ISEPPI M, et al. Slab-derived origin of tremolite-antigorite veins in a supra-subduction ophiolite: the peridotite Nappe (New Caledonia) as a case study[J]. International Journal of Earth Sciences, 2020, 109: 171-196. |
[68] | CHEN Y, HAN X Q, WANG Y J, et al. Precipitation of calcite veins in serpentinized harzburgite at Tianxiu hydrothermal field on Carlsberg Ridge (3.67°N), northwest Indian Ocean: Implications for fluid circulation[J]. Journal of Earth Science, 2020, 31(1): 91-101. |
[69] | LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140. |
[70] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3):399-424. |
LIU J W, TIAN S H, WANG L. Application of magnesium stable isotopes for studying important geological processes—a review[J]. Earth Science Frontiers, 2023, 30(3): 399-424. | |
[71] | 高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2):417-432. |
GAO X Y, ZHENG Y F. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432. | |
[72] | 池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报, 2008, 24(9):1945-1953. |
CHI G X, LU H Z. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept[J]. Acta Petrologica Sinica, 2008, 24(9): 1945-1953. | |
[73] | BINDEMAN I N, PONOMAREVA V V, BAILEY J C, et al. Volcanic arc of Kamchatka: A province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 841-865. |
[74] | EILER J M. Oxygen isotope variations of basaltic lavas and upper mantle rocks[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 319-364. |
[1] | 康正武, 涂乾光, 闫运伟, 邢小罡. 印度洋静止气象卫星Meteosat-8/SEVIRI海面温度验证[J]. 海洋学研究, 2024, 42(2): 26-39. |
[2] | 吴文秀, 许馨文, 程树兴, 招春旭, 郭有俊, 沈春燕, 颜云榕. 海表温度对南沙海域鸢乌贼资源变动的影响[J]. 海洋学研究, 2024, 42(1): 106-116. |
[3] | 俞杰, 张翰, 陈大可. 基于Argo数据研究南海上层海洋对超强台风“威马逊”(2014)的温盐响应[J]. 海洋学研究, 2023, 41(2): 14-27. |
[4] | 宋晚郊, 张鹏, 孙凌, 唐世浩, 周芳成, . 基于DINEOF的风云极轨气象卫星海表温度重构方法研究[J]. 海洋学研究, 2022, 40(2): 10-18. |
[5] | 陈莹, 赵辉, . 南海中西部叶绿素时空变化特征分析[J]. 海洋学研究, 2021, 39(3): 84-94. |
[6] | 张小龙, 付东洋, 刘大召, 刘贝, 余果, 钟雅枫, 王焕. 基于EOF分析中西太平洋金枪鱼围网渔场的海洋环境[J]. 海洋学研究, 2019, 37(2): 81-94. |
[7] | 张莹, 谭艳春, 彭发定, 廖杏杰, 余昱昕. 基于EEMD和ARIMA的海温预测模型研究[J]. 海洋学研究, 2019, 37(1): 9-14. |
[8] | 周孔霖, 杜萍, 寿鹿, 廖一波, 刘永叶, 黄伟. 温度骤降对大黄鱼Larimichthys crocea鱼卵与仔鱼的影响[J]. 海洋学研究, 2018, 36(4): 68-75. |
[9] | 何欣, 孙国胜, 初凤友, 王春光, 晋瑞香, 李洋, 战乃臣, 刘世伟, 孙九达. 中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义[J]. 海洋学研究, 2017, 35(2): 23-32. |
[10] | 成奇, 潘连德. 温度对绿海龟心、肝、肾功能生化指标的影响[J]. 海洋学研究, 2016, 34(2): 93-98. |
[11] | 陈小丹, 梁楚进, 董昌明. 西南印度洋龙方斤热液区羽流信号的检测与通量估算[J]. 海洋学研究, 2015, 33(4): 43-52. |
[12] | 高艳秋, 苏洁, 李磊, 吕咸青. 海表面温度的变分同化预报模式:初始场的全局优化[J]. 海洋学研究, 2015, 33(1): 1-8. |
[13] | 席婧嫄, 周磊, 姜良红. 全球大洋季节内尺度上海-气相互作用特征分析[J]. 海洋学研究, 2014, 32(3): 1-8. |
[14] | 林汝榕, 邢炳鹏, 柯秀蓉, 蔡文旋, 林锡煌, 张稚兰. 基于正交实验的高含量藻红蛋白紫菜丝状藻体优化调控培养条件研究[J]. 海洋学研究, 2014, 32(2): 67-73. |
[15] | 王兴智, 李崇银. 春季东海黑潮海表温度与风场的年代际变化特征[J]. 海洋学研究, 2013, 31(4): 10-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||