Most download

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 3 years
Please wait a minute...
For Selected: Toggle Thumbnails
Change characters of coastline and tidal flat in the islands with different principle functions in the Zhoushan Archipelago from 1986 to 2017
CAO Wenting, ZHANG Huaguo, LI Rui
Journal of Marine Sciences    2021, 39 (4): 123-131.   DOI: 10.3969/j.issn.1001-909X.2021.04.012
Abstract559)      PDF (2709KB)(3175)      
 The temporal and spatial change characters of coastline and tidal flat in the islands with different principle functions in the Zhoushan Archipelago were analyzed, using a coastal remote sensing monitoring dataset with 30 m spatial resolutions at annual interval from 1986 to 2017. The results suggested that the coastlines in Zhoushan Archipelago advanced toward the sea, with many water areas(152 km2) and tidal flats(18 km2) reclaimed into lands and the government policies were the main driven factors. The change characters were various among the islands with different principle functions. In particular, the land reclamation was significant in the islands with the principle functions of comprehensive development, coastal industry, coastal tourism, and harbor and logistics, accounting for 96% of the archipelagos new lands. The land reclamation was slight in the islands with marine science and education and scientific fishery functions, accounting for 4% of the archipelagos total new lands. Meanwhile, the coast was stable and well protected in the islands with ecological conversation and clean energy functions. The results could provide scientific basis for coastal zones ecological protection and restoration projects, as well as the marine principle functional zoning.

Reconstruction of sea surface temperature from DINEOF-based FY polar-orbiting meteorological satellite
SONG Wanjiao, ZHANG Peng, SUN Ling, TANG Shihao, ZHOU Fangcheng,
Journal of Marine Sciences    2022, 40 (2): 10-18.   DOI: 10.3969-j.issn.1001-909X.2022.02.002
Abstract645)      PDF (3384KB)(2054)      
Sea surface temperature (SST) is the critical factor for depicting the marine thermal distribution. Daily global SST data sets support the typhoon elaborated monitoring and other marine disasters forecast. SST products retrieved by the visible infrared radiometers and mediumresolution imagers have high spatial resolution, while the SST products retrieved by infrared remote sensing are affected by clouds, fog and haze, and therefore a large areas under the clouds are lack of value. SST products retrieved by the microwave radiometer have low spatial resolution, while the microwave could penetrate the cloud layer to achieve all-weather sea surface observation. The data interpolation empirical orthogonal function method (DINEOF) was used to reconstructed the global SST products, and FY-3 (Fengyun 3) SST data sets were applied in this study, which included the SST data sets from the FY-3B/FY-3C Visible and Infra-Red Radiometer, FY-3D Medium Resolution Spectral Imager and FY-3D Micro-Wave Radiation Imager. Accuracy of the reconstructed data sets was verified using OISST measurements to demonstrate the validity and reliability of the DINEOF method. The results show that DINEOF reconstructed sea surface temperature (DSST) data are validated reliable. Root mean square error of the original data is ranging from 0.59 ℃ to 0.70 ℃, while the reconstructed data is relatively stable, ranging from 0.10 ℃ to 0.34 ℃. Correlation coefficient obvious raises from 0.33-0.48 to 0.78-0.98. Multi-sensors reconstructed SST products is continuous and credible in spatial distribution and monitor the variation of warm pool from spring to winter. Addition of FY-3D microwave SST products has significantly improved the spatial continuous distribution and temporal resolution of reconstructed SST.
Explorations of marine gas hydrate deposits and the signatures of hydrocarbon venting using in situ techniques
LIU Liping, CHU Fengyou, GUO Lei, LI Xiaohu
Journal of Marine Sciences    2023, 41 (1): 26-44.   DOI: 10.3969-j.issn.1001-909X.2023.01.003
Abstract350)   HTML24)    PDF (4566KB)(871)      

Marine gas hydrate deposits are significant temporal reservoirs for hydrocarbons migrating from deep sources. This is crucial to our understanding of ocean carbon cycling. The cold seep, a geological process regarding gas leakage from deep or shallow sources, is usually linked with gas hydrate decomposition. In this thesis, we reviewed the latest applications of in situ monitoring and detecting methods regarding the leakage plumes, migration pathways, and seafloor geomorphologies associated with gas hydrate and cold seep systems, primarily including vessel-and land-based gas plume measurements, surface ocean-lower atmosphere hydrocarbon emission detections, seafloor visualization techniques, and in situ observation networks. The integrated applications of these in situ observation methods provide a nuanced view of the temporal and spatial variability of hydrate and cold seep systems, facilitate understanding of the fate of hydrocarbons, and expand our knowledge of cold-seep biota in a watery desert.

Study on tide and tidal current near the Changjiang (Yangtze River) Estuary based on observational data
ZENG Dingyong, XUAN Jiliang, HUANG Daji, et al
Journal of Marine Sciences    2022, 40 (1): 12-20.   DOI: 10.3969/j.issn.1001-909X.2022.01.002
Abstract1645)      PDF (2926KB)(840)      
There is strong tide in the Changjiang (Yangtze River) Estuary and its adjacent area. Except for the coast area, there is a lack of longterm tide level and tidal current data in the offshore area. Long time series of water level observation data was used in this study, and the results reveal that the tidal type in the Changjiang Estuary is a regular semidiurnal tide, with a significant shallow water division in the nearshore area; the M2 division is the most significant semidiurnal tide, and the amplitude tends to increase from the open sea in the east to the shallow water or island group at the mouth of Hangzhou Bay in the west. The M2 tidal current is the most significant semidiurnal tidal current, and the rotating tide is the most significant semidiurnal tide. The two stations to the south of the Changjiang mouth are rotating counterclockwise, while the stations to the east of the mouth are rotating clockwise. The vertical structure of the tide has significant spatial differences, the ellipticity of the M2 tidal current is mostly negative, the ellipticity of the M2 tidal current, the direction and the arrival time of maximum velocity all vary significantly with depth.

A review of the carbon cycle in river-estuary-coastal ocean continuum
CHEN Jianfang, ZHAI Weidong, WANG Bin, LI Dewang, XIONG Tianqi, JIN Haiyan, LI Hongliang, LIU Qinyu, MIAO Yanyi,
Journal of Marine Sciences    2021, 39 (4): 11-21.   DOI: 10.3969/j.issn.1001-909X.2021.04.002
Abstract1283)      PDF (2040KB)(738)      
The river-estuary-coastal ocean continuum (referred to as the continuum hereinafter) is a transition zone connecting lands and oceans. The carbon budgets in the continuum are dynamic and uncertain components in global carbon budgets. This complex landocean interactive ecosystem can absorb atmospheric CO2 through photosynthesis and dissolution of CO2. Also, the carbon fixed by photosynthesis or chemical weathering in land and watershed can be transported horizontally to the shelf waters and open oceans. In this paper, the progress of carbon cycles in the continuum is reviewed by taking the famous Chesapeake Bay and Changjiang Estuary-East China Sea continuum as typical examples. It is concluded that systematic observation characterized with land-sea coordination, sea-space integration, point-line combination, should be combined with physicalecological numerical simulation to reveal the multiple time-space scale processes. The strategy is generally operable, and the historical retrospective of results is also achievable. Thus, it can be used to clarify the evolution of carbon exchange along the river-estuary-coastal ocean continuum and their influences on carbon budgets under the combined pressures of climate change and anthropogenic activities.


Historical characteristics of the storm surges along Shanghai coast
Journal of Marine Sciences    2021, 39 (4): 101-108.   DOI: 10.3969/j.issn.1001-909X.2021.04.010
Abstract739)      PDF (3305KB)(728)      
Comparison of methods for calculating bottom shear stress based on intertidal flat field data
SUN Jianxiong, ZHANG Wenxiang, SHI Benwei
Journal of Marine Sciences    2022, 40 (1): 21-32.   DOI: 10.3969/j.issn.1001-909X.2022.01.003
Abstract522)      PDF (2851KB)(705)      
As a key parameter in hydrodynamic and sediment transport models, bottom shear stress is very important to study the initiation and erosion rates of bottom sediment. At present, there are six theoretical methods for calculating bottom shear stress based on field measured flow velocity data: LPmean method, LPmax method, TKE method, TKEW method, RS method and ID method, all of which have their specific applicable conditions. It is very important to select an appropriate method to calculate the bottom shear stress in the shallow water area of estuarine and coastal areas where the actions of current and wave are complex. In this study, one observation site at Dafeng Doulong Port, Jiangsu Province (median particle size: 68.56 μm) and two observation sites at Eastern Chongming Shoal, Shanghai (median particle size: 12.89 μm and 45.02 μm) were taken as examples. Field data were collected using Acoustic Doppler Velocimetry and wave measurement instrument (RBRwave), and the bottom shear stress was calculated by six theoretical methods. The results show that: (1) The LPmean method is affected by the average velocity, the distance from the probe to bed and the strength of waves, which underestimates the bottom shear stress and is not suitable for shallow water environment in intertidal flat; (2) LPmax method and TKE method can overestimate shear stress in shallow water environment of intertidal flat where flow velocity varies greatly and wave action is obvious; (3) TKEW method was modified on the basis of TKE method, which is more suitable for solving the bottom shear stress under strong wave action; (4) The results of RS method are affected by waves, and the results of ID method are more reliable than those of RS method when large waves exist, but ID method will overestimate the bottom shear stress when water depth is insufficient.
Recent progress on the studies of the physical mechanisms of hypoxia off the Changjiang (Yangtze River) Estuary
ZHOU Feng, QIAN Zhouyi, LIU Anqi, MA Xiao, NI Xiaobo, ZENG Dingyong,
Journal of Marine Sciences    2021, 39 (4): 17-38.   DOI: 10.3969/j.issn.1001-909X.2021.04.003
Abstract706)      PDF (3558KB)(688)      
The combination of human activities and natural factors has formed the eutrophication of the Changjiang (Yangtze River) Estuary and its adjacent waters, leading to increased hypoxic condition in the bottom water in summer, which has become an important signal of the deterioration of ecosystem health. This paper combs the important understandings gained from the recent studies of hypoxia in this area, analyzes multiscale temporal changes of dissolved oxygen, e.g., focusing on the tidalscale, eventscale, and interannual scale, and factors relevant to stratification and material transport. The relevant mechanisms analyzed includes processes such as the diluted water extension, Taiwan Warm Current, fronts, wind field and tides that affect oxygen consumption or transport process. It is also revealed that the main hypoxia phenomena were separated in the Changjiang Estuary and the coastal waters of Zhejiang Province. The similarities and differences in the formation and evolution of the two hypoxic zones were presented. At present, a solid foundation has been laid for the understanding of the hypoxia occurrence, however due to its multiscale temporal variations, field experiments and quantitative studies should be strengthened from a multidisciplinary perspective, and the longterm evolution trend of hypoxia in this area should also be clarified based on longterm time series monitoring.
Research on convenient calibration method of optical dissolved oxygen sensor based on air medium
GAO Shun, ZHANG Yingying, YUAN Da, et al
Journal of Marine Sciences    2022, 40 (1): 81-88.   DOI: 10.3969/j.issn.1001-909X.2022.01.009
Abstract414)      PDF (1681KB)(566)      
Optical dissolved oxygen sensor based on fluorescence quenching principle can obtain spatiotemporal data of dissolved oxygen in seawater, which is widely used in long-term monitoring of marine environment. However, due to the “storage drift” and “measurement drift” occurring during storage and distribution, it is necessary to calibrate and correct the data drift of the instrument. Existing calibration methods have long cycle and complex operation. In this project, the response characteristics of optical dissolved oxygen sensor in air and water medium were studied, and a field calibration method of optical dissolved oxygen sensor using air medium was proposed, and a two-point calibration model of the instrument was established. Experimental results show that the calibration method can effectively correct the data drift of the dissolved oxygen sensor, and the deviation between the measured value of the sensor and the standard value of Winkler titration is within  ±6 μmol·L-1. This method can realize the convenient and rapid correction of optical dissolved oxygen sensor, avoid the tedious steps of laboratory maintenance, improve the quality of monitoring data, maintain the continuity of monitoring data, and has important application value.

Marine magnetotelluric reveals the resistivity structure of the Suda Seamount in the western Pacific Ocean
JIANG Jie, ZHANG Tao, CAI Xiaoxian, WU Zhaocai,
Journal of Marine Sciences    2022, 40 (2): 42-52.   DOI: 10.3969-j.issn.1001-909X.2022.02.005
Abstract436)      PDF (4125KB)(544)      
In order to study the deep resistivity structure of intraplate volcanoes and their formation processes, a marine magnetotelluric survey at Suda Seamount in the western Pacific Ocean was conducted. The mainstream data processing method SSMT2000 was used for data processing. The measured data after rotation and the two groups of rotation invariants obtained from the measured data were tested for magnetotelluric response under the assumption of one-dimensional structure, and one-dimensional inversion was conducted for the YX direction data with the best response. Combined with one-dimensional forward modeling and other geological data, the inversion results were comprehensively interpreted. The inversion results show that the thickness of the crust at Suda Seamount is about 21.5 km. The thick volcanic clastic rocks indicate that the formation of Suda Seamount is mainly eruptive and weakly intrusive.
Qiongzhou Strait as a self-adapted low-passing filter?
LI Yan
Journal of Marine Sciences    2022, 40 (3): 9-16.   DOI: 10.3969-j.issn.1001-909X.2022.03.002
Abstract344)      PDF (1618KB)(501)      
Since a diagram depicting "The Great Ocean Conveyor" was first appeared as a logo by Wally Broecker in 1987, how the warmed upper ocean circulation ran through the Indonesian Seas with their complex coastline geometry and narrow passages, known as the Indonesian through-flow, becomes one of the difficult settings in boundary conditions of climate change model. With strong nonlinear effect, a shallow narrow passage forms vertical mixed hotspots on the one hand, and on other hand, it becomes a self-adapted low-pass filter if the tidal resonance units are introduced. Qiongzhou Strait, a sufficient sediment supply and shallow narrow passage for the northern shelf of the South China Sea, is reported with strong tidal current and westward through-flow. And its tidal channel and tidal deltas are maintained by the tidal resonance units introduced themself. Strong disturbances such as typhoon and cold wave can cause storm jet flow through the strait, triggering different high nutrition, algal bloom and hypoxia events over the adjacent Beibu Gulf. Qiongzhou Strait seems to be a noteworthy case of studying how the self-adapted low-pass filter introduced and whether human activities can affect the through-flow on the shallow narrow passages.

Seasonal variation of water masses and current field in the northeastern Beibu Gulf based on observations in 2018-2019
Journal of Marine Sciences    2022, 40 (3): 73-85.   DOI: 10.3969-j.issn.1001-909X.2022.03.007
Abstract372)      PDF (6105KB)(443)      
 Hydrological observations were carried out in the northeastern of Beibu Gulf in July and October 2018, February 2019 to reveal its seasonal variations. Sectional measurements of temperature, salinity and current velocity were deployed to the north of 18°N and east of 108°E. The results show that there is obvious seasonal disparities on the character of water masses in this region: the sea water temperature in summer decreases from northern shallow water to southern deep region and the onshore brackish water dominates the area shallower than 30 m, and a occlusive cold water mass appears in deep layer to the west of Hainan Island; while in winter the water temperature increases from north to south, the brackish water shrinks to the northern coast shallower than 10 m, the area is occupied mainly by the mixed water, and a warm tongue appears in upper layer on the west of Hainan Island. The circulation in the research region is mainly counterclockwise in all three seasons, though the strength of current varies in different seasons, and is significantly influenced by wind. The water exchange between the northeastern gulf and outer ocean is not active, since the observed salinity is entirely less than 34. The water mass is generally shear instable, and static instability appears in winter. This suggests that the diapycnal mixing in this region might be strong. 

Study on orbit calculation of HY-1C satellite
LIU Jianyang, MAO Zhihua, SHI Yi
Journal of Marine Sciences    2022, 40 (1): 53-63.   DOI: 10.3969/j.issn.1001-909X.2022.01.006
Abstract723)      PDF (2798KB)(424)      
Orbital data are important parameters involved in the satellite data processing and HY1C satellite products with high quality are inseparable from the accurate calculation of the orbit. In this study, data were extracted from the TLE (TwoLine Orbital Element) and used to accurately simulate satellite orbit based on STK (Satellite Tool Kit) software. The ephemeris was outputted to compare the accuracy of two satellite orbit algorithms of HY1C and evaluate the influence of perturbation factors on orbit calculation. Method one uses an algorithm which does not consider perturbation factors and extrapolates the ephemeris parameters of the observation time based on the orbit elements of the reference time, and then calculates the satellite orbit data. Method two adopts the SGP4 model which considers perturbation to calculate the orbit data. The results show that perturbation has a significant impact on the orbit calculation. The algorithm error without considering the perturbation increases significantly with the passage of time, and the position errors are less than 10 km with the speed errors less than 10 m/s in half an hour. While SGP4 model algorithm runs fast with high calculation accuracy and good stability, the position and speed errors within 24 hours are less than 68 m and 0.051 m/s respectively. Therefore, SGP4 model algorithm can be used for the highprecision orbit calculation of the loworbit satellite HY1C.

Assessment of carbon sink potential and driving factors of island forests on national nature reserve
WU Liangxu, ZOU Huimin, CHEN Wei, XU Minghai, CAI Houcai, CHEN Shuyi, LI Xianglan
Journal of Marine Sciences    2023, 41 (1): 96-109.   DOI: 10.3969-j.issn.1001-909X.2023.01.008
Abstract317)   HTML14)    PDF (4905KB)(415)      

The monitoring of carbon flux dynamics and assessment of carbon sink functions of island forest ecosystems are rarely reported due to their special geographical location and few data sources. In this study, the forest ecosystem of the Nanji Island was used as the research object, the carbon sink potential of island forests and their driving factors were assessed. Based on eddy correlation techniques, the temporal variation characteristics and driving factors of net ecosystem productivity (NEP), gross primary productivity (GPP), and ecosystem respiration (Reco) from 2020 to 2021 were explored. Results showed that the forest ecosystem of Nanji Island was carbon sink. Net CO2 uptake in 2020 and 2021 were 516 g C·m-2·a-1 and 598 g C·m-2·a-1, Reco were 1 037 g C·m-2·a-1 and 1 646 g C·m-2·a-1, and GPP were 1 552 g C·m-2·a-1 and 2 244 g C·m-2·a-1, respectively. Total solar radiation (Rg), photosynthetically active radiation (PAR), net radiation (Rn) and sensible heat (H) were significantly and positively correlated with NEP and GPP (p≤0.001); air temperature (Tair) and soil temperature (Tsoil) were significantly and positively correlated with Reco(p≤0.001). The photosynthesis time of Nanji Island forest was longer than the carbon sink time on the daily scale. When Tair reached 10.05-27.76 ℃ and PAR reached 110.47-429.44 μmol·m-2·s-1, the photosynthesis intensity of island forest was higher than that of ecosystem respiration, which showed CO2 absorption. The monitoring and assessment of carbon fluxes in the forest ecosystems of Nanji Island will provide an important theoretical support for the establishment of a dynamic monitoring and assessment management system for blue carbon in China.

Interdecadal variation of ocean heat content at depth of 0-300 m in the tropical northwest Pacific
JIANG Jiaming, WANG Yilei
Journal of Marine Sciences    2022, 40 (1): 1-11.   DOI: 10.3969/j.issn.1001-909X.2022.01.001
Abstract568)      PDF (3850KB)(412)      
The Pacific Ocean is the main region occurring the interannual and interdecadal variabilities of sea surface temperature. Comparing to the sea surface temperature, the variabilities of ocean heat content in the Pacific Ocean were less studied. Therefore, this paper studied the variabilities of ocean heat content (at depth of 0300 m) in the Pacific Ocean during the period from 1980 to 2020. The Ensemble Empirical Mode Decomposition method (EEMD) was applied to the Institute of Atmospheric Physics (IAP) heat content data to extract the signals at different time scales, and then the Empirical Orthogonal Function (EOF) was applied to analyze the temporal and spatial characteristics of the ocean heat content at different time scales. The results showed that besides the interannual variation, there were also evident interdecadal variations and longterm warming trends of heat content at depth of 0~300 m in the tropical northwest Pacific. In the eastern Pacific and the highlatitude western Pacific, the interdecadal variability of heat content was not prominent. In the tropical northwest Pacific, the heat content was higher during 19801988 and 19992013 than those during 19891998 and 20142020. Our analysis showed that the interdecadal variability was mostly occurred at 5°N—20°N, 120°E—180°E, and at depth of 50200 m in the tropical northwestern Pacific. The interdecadal variation of ocean heat content in the tropical northwestern Pacific played an important role in the interdecadal variation of global sea surface temperature.
Interactions between vegetation and sediment carbon pools within coastal blue carbon ecosystems: A review and perspective
CHEN Yining, CHEN Luzhen
Journal of Marine Sciences    2023, 41 (1): 3-13.   DOI: 10.3969-j.issn.1001-909X.2023.01.001
Abstract624)   HTML294)    PDF (1348KB)(390)      

Mangroves, coastal salt marshes and seagrass beds, as the typical coastal blue carbon ecosystems, have been widely recognized for their remarkable capacity in carbon storage. Vegetation carbon pool and sediment (or soil) carbon pool were considered to be the major carbon pools within the coastal blue ecosystems and their variations determined the overall carbon sequestration of the ecosystems. From a perspective of carbon pool interactions, this study summarized the previous research work based on literature review, including the interactions within various vegetation carbon pools and within various sediment carbon pools, as well as the interactions between vegetation and sediment carbon pools. Interspecific competition, allochthonous carbon input and biogeomorphology were found to be the key to understand the carbon pool interactions. Finally, a perspective on the current state-of-the-art of blue carbon pool study is offered, with challenges and suggestions for future directions.

Characteristics of tide, tidal current and their effects on nutrients in Xincun Lagoon, Hainan Island
ZHANG Yipu, YU Shuo, HUANG Daji, ZHOU Zebin,
Journal of Marine Sciences    2022, 40 (2): 69-82.   DOI: 10.3969-j.issn.1001-909X.2022.02.008
Abstract542)      PDF (5177KB)(384)      
Based on the measured hydrological and water quality data of Xincun lagoon in December 2020, the characteristics of tide in Xincun lagoon were studied, and the effects of tidal elevation changes on nutrients in Xincun lagoon were discussed. The results show that the tide of Xincun lagoon is irregular diurnal. The tidal current at the inlet of the lagoon is a reciprocating current, lasting 15 h for flood tide and 10 h for ebb tide. The concentration of dissolved inorganic nitrogen (DIN), phosphate (PO3-4) and silicate (SiO2-3) vary from 0.91 to 20.87 μmol/L, 0.11 to 5.92 μmol/L and 2.36 to 134.75 μmol/L respectively. The concentrations of DIN, PO3-4 and SiO2-3 at the observation sites in the lagoons changed with the flood and ebb of the tidal process. The flow velocity at the inlet of the lagoon has an important influence on the change of tidal elevation at the observation sites, and the tidal flux basically determines the change of tidal elevation at the observation sites. There is a significant negative correlation between the nutrient concentration at the inlet of the lagoon and at the mariculture area and the tidal elevation, and the tidal current velocity has an important effect on the nutrient concentration at the inlet of the lagoon and the mariculture area. The results will provide scientific basis for pollution control and ecological restoration of Xincun lagoon.
Driving force of marine sedimentary source to sink: A case study from Beibu Gulf
Journal of Marine Sciences    2022, 40 (3): 17-32.   DOI: 10.3969-j.issn.1001-909X.2022.03.003
Abstract453)      PDF (3784KB)(369)      
Dynamics of mangrove change: Insights from 30-year observations of Maowei Sea
Journal of Marine Sciences    2022, 40 (3): 132-141.   DOI: 10.3969-j.issn.1001-909X.2022.03.012
Abstract312)      PDF (2173KB)(368)      
Understanding the spatial evolution of mangrove patches is important to comprehensively and accurately evaluate the results of protection and restoration efforts in regional mangroves. In this study, the recent 30-year changes in area and number of mangrove patches in Maowei Sea and their driving factors were analyzed. The 1990, 2000, 2010 and 2019 Landsat remote sensing images were used as the main data sources, whereas the landscape dynamic analysis, spatial overlay analysis and main transformation route counting were adopted as the analytical approaches. The results demonstrated that: (1) The area of mangrove in Maowei Sea increased from 479.7 hm 2 to 1 477.5 hm 2 between 1990 and 2019 with the centroid shifting northward and westward. (2) Anthropogenic and natural factors were identified as the main driving force leading the changes in mangrove patch quantity in Maowei Sea from 1990 to 2010 and 2010 to 2019, respectively. (3) The number of mangrove patches increased from 204 in 1990 to 405 in 2019. However, the simultaneous occurrence of declining patch density and increasing mean patch size indicated that the patch fragmentation had been alleviated caused by the driving of natural factors. The artificial plantation of mangroves, especially using Sonneratia apetala, had contributed to the overall increase in mangrove area in Maowei Sea. Nevertheless, research on the artificial forestation process, expansion mechanism of mangrove patches and their ecological effects should be emphasized in future.

Distribution, movement and generation mechanism of the mesoscale eddy around the Kuroshio in the East China Sea
LI Zhichao, GUO Junru, SONG Jun, BAI Zhipeng, FU Yanzhao, CAI Yu, WANG Xifeng
Journal of Marine Sciences    2022, 40 (4): 1-10.   DOI: 10.3969j.issn.1001-909X.2022.04.001
Abstract547)      PDF (3317KB)(355)      
In order to explore the distribution, formation mechanism and motion law of eddy around Kuroshio in East China Sea, firstly, the eddy distribution around the Kuroshio in the East China Sea during the past 27 years was analyzed by using the mesoscale eddy data set of the AVISO(Archiving, Validation and Interpretation of Satellite Oceanographic Data). The results show that there are 650 eddies generated in the meander of the Kuroshio, and 271 eddies in the middle part of the Kuroshio. The diameters of the most these eddies were between 100 to 150 km, and the amplitudes were between 2 to 6 cm. Secondly, the motion path and eddy motion process of the Kuroshio in the East China Sea are also analyzed. The results show these the cyclonic eddies are easy to be generated in the inner side of the Kuroshio cyclonic bend, with a long path. For example, at the cyclone bend of the Kuroshio axis in the northeast of Taiwan, the average length of the path was 87.6 km. Otherwise, when these anticyclonic eddies are generated, these eddies usually are wandered. In the middle part of the Kuroshio, the eddy showed the polar symmetric distribution characteristics of these cyclonic eddies in the west side of the Kuroshio main axis and these anticyclonic eddies in the east side of the Kuroshio main axis. Both types of eddies moved northeastward along the Kuroshio main axis. Finally, combined with reanalysis data sets of ocean current and sea surface height, the eddy motion law and generation mechanism were discussed. It is concluded that these eddies generation at the curve of the Kuroshio are related to the separation of the boundary layer of the Kuroshio fluid. The Kuroshio countercurrent from the south of Yanmei Island to the west of Okinawa Island played a key role in the polar symmetric distribution of these eddies in the middle part of the Kuroshio. These eddies usually experience three stages of growth, maturation and decay in the process of movement.