海洋学研究 ›› 2024, Vol. 42 ›› Issue (4): 12-20.DOI: 10.3969/j.issn.1001-909X.2024.04.002

• 研究论文 • 上一篇    下一篇

2020—2023年“三重”拉尼娜期间热带太平洋上层海洋的时空差异

陈聪1,2(), 徐楚越1,2, 秦箭煌1,2,3,*(), 康彦彦1,2, 王桂芬1,2   

  1. 1.自然资源部海洋灾害预报技术重点实验室,江苏 南京 210024
    2.河海大学 海洋学院,江苏 南京 210024
    3.南通河海大学海洋与近海工程研究院,江苏 南通 226000
  • 收稿日期:2024-07-09 修回日期:2024-09-25 出版日期:2024-12-15 发布日期:2025-02-08
  • 通讯作者: 秦箭煌
  • 作者简介:*秦箭煌(1992—),男,副研究员,主要从事海气相互作用方面的研究,E-mail: qinjianhuang@hhu.edu.cn
    陈聪(2001—),男,广东省珠海市人,主要从事海气相互作用方面的研究,E-mail: 17817459432@163.com
  • 基金资助:
    国家自然科学基金(42106003);南通市自然科学基金(JC2023057)

The spatial and temporal differences of upper ocean in tropical Pacific during the “triple-dip” La Niña of 2020-2023

CHEN Cong1,2(), XU Chuyue1,2, QIN Jianhuang1,2,3,*(), KANG Yanyan1,2, WANG Guifen1,2   

  1. 1. Key Laboratory of Marine Hazards Forecasting, MNR, Nanjing 210024, China
    2. College of Oceanography, Hohai University, Nanjing 210024, China
    3. Nantong Ocean and Coastal Engineering Research Institute, Hohai University, Nantong 226000, China
  • Received:2024-07-09 Revised:2024-09-25 Online:2024-12-15 Published:2025-02-08
  • Contact: QIN Jianhuang

摘要:

“三重”拉尼娜在历史上罕见,但已经对全球天气和气候系统带来了深远影响。为了提高对 “多重”拉尼娜成因理解和对天气、气候的预测能力,本文通过多套观测和再分析数据,采用合成分析等方法对2020—2023年“三重”拉尼娜期间热带太平洋年际、季节尺度特征以及相应的海气相互作用过程进行了对比和分析。结果显示: 2020年拉尼娜峰值在冬季,持续时间在“三重”拉尼娜中最长;2021年拉尼娜峰值也出现在冬季,表现为“东部型”,冷中心靠近东部;2022年拉尼娜在秋季暴发,强度相对较弱,持续时间最短,冷中心位于中部,呈现“中部型”特征。进一步研究发现,纬向风的变化与海面温度的变化存在耦合关系,但在“三重”拉尼娜期间,东风异常的强度和位置变化较小。相比之下,次表层海温的变化与海面温度异常中心的变化高度一致,它可能是导致拉尼娜强度和类型差异的关键因素。尽管东传开尔文波对海洋系统有一定影响,但它的传播速度和强度在“三重”拉尼娜期间的变化较小。此外,研究发现暖水体积增长速率的不同造成了各重拉尼娜事件之间的强度差异,而暖水的经向辐合与辐散则导致了拉尼娜的季节锁相现象。

关键词: 海温异常, 次表层海温, 暖水体积, ENSO, 气候变化, 海气相互作用, 多年连续拉尼娜, 气候预测

Abstract:

The occurrence of a “triple-dip” La Ni?a event is historically rare, yet it has exerted profound impacts on global weather and climate systems. To enhance the understanding of the causes of multiple La Ni?a events and improve the prediction capabilities for weather and climate, a comparative analysis of the ocean-atmosphere processes in the tropical Pacific during the 2020-2023 “triple-dip” La Ni?a period was conducted based on multiple sets of observational and reanalysis data, employing composite analysis and other methods. Results showed that: The peak of the 2020 La Ni?a event occurred in winter and lasted the longest among this “triple-dip” La Ni?a events; the peak of the 2021 La Ni?a event also occurred in winter, with the cold anomaly centered near the eastern Pacific, classified as an “Eastern Pacific” type; the peak of the 2022 La Ni?a event occurred in autumn, relatively weaker in intensity and the shortest in duration, with the cold anomaly centered in the central Pacific, classified as a “Central Pacific” type. Further research revealed a coupling relationship between zonal wind and sea surface temperature (SST) variations. However, during this “triple-dip” La Ni?a period, the intensity and location of the eastward wind anomalies showed little variation across different La Ni?a events. In contrast, subsurface SST changes align with changes in SST anomaly centers, it may be a crucial factor influencing the intensity and type differences among this “triple-dip” La Ni?a events. Although eastward-propagating Kelvin waves had a certain impact on the ocean system, but their propagation speeds and intensities exhibited minimal variations during this “triple-dip” La Ni?a events. Additionally, the study found that variations in the growth rate of warm water volume contributed to the differences in La Ni?a intensities, while the meridional convergence and divergence of warm water led to the seasonal phase-locking phenomenon of La Ni?a events.

Key words: sea surface temperature anomaly, subsurface sea temperature, warm water volume, El Ni?o-Southern Oscillation, climate change, air-sea interaction, multiyear La Ni?a, climate prediction

中图分类号: