[1] |
ZHENG F, FANG X H, ZHU J, et al. Modulation of Bjerknes feedback on the decadal variations in ENSO predictability[J]. Geophysical Research Letters, 2016, 43(24): 12560-12568.
|
[2] |
CHIKAMOTO Y, TANIMOTO Y. Air-sea humidity effects on the generation of tropical Atlantic SST anomalies during the ENSO events[J]. Geophysical Research Letters, 2006, 33(19): L19702.
|
[3] |
JOHNSON S J, STOCKDALE T N, FERRANTI L, et al. SEAS5: The new ECMWF seasonal forecast system[J]. Geoscientific Model Development, 2019, 12(3): 1087-1117.
DOI
|
[4] |
MACLACHLAN C, ARRIBAS A, PETERSON K A, et al. Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(689): 1072-1084.
|
[5] |
O’LENIC E A, UNGER D A, HALPERT M S, et al. Developments in operational long-range climate prediction at CPC[J]. Weather and Forecasting, 2008, 23(3): 496-515.
|
[6] |
MCPHADEN M, SANTOSO A, CAI W. El Niño Southern Oscillation in a changing climate[M]. [S.l.]: Wiley, 2020.
|
[7] |
TIMMERMANN A, AN S I, KUG J S, et al. El Niño-Southern Oscillation complexity[J]. Nature, 2018, 559: 535-545.
|
[8] |
DINEZIO P N, DESER C, OKUMURA Y, et al. Predictability of 2-year La Niña events in a coupled general circulation model[J]. Climate Dynamics, 2017, 49(11): 4237-4261.
|
[9] |
HU Z Z, KUMAR A, XUE Y, et al. Why were some La Niñas followed by another La Niña?[J]. Climate Dynamics, 2014, 42: 1029-1042.
|
[10] |
MIN S K, CAI W J, WHETTON P. Influence of climate variability on seasonal extremes over Australia[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 643-654.
|
[11] |
LUO J J, LIU G Q, HENDON H, et al. Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010-2012[J]. Scientific Reports, 2017, 7: 2276.
|
[12] |
KOSAKA Y, XIE S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501: 403-407.
|
[13] |
ENGLAND M H, MCGREGOR S, SPENCE P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 2014, 4: 222-227.
|
[14] |
WATANABE M, SHIOGAMA H, TATEBE H, et al. Contribution of natural decadal variability to global warming acceleration and hiatus[J]. Nature Climate Change, 2014, 4: 893-897.
|
[15] |
WANG C Z, DESER C, YU J Y, et al. El Niño and Southern Oscillation (ENSO): A review[M]//GLYNN P W, MANZELLO D P, ENOCHS I C. Coral reefs of the eastern tropical Pacific. Dordrecht: Springer, 2017: 85-106.
|
[16] |
GODDARD L, PHILANDER S G. The energetics of El Niño and La Niña[J]. Climate, 2000, 13, 1496-1516.
|
[17] |
WYRTKI K. El Niño—The dynamic response of the equatorial Pacific ocean to atmospheric forcing[J]. Journal of Physical Oceanography, 1975, 5(4): 572-584.
|
[18] |
WYRTKI K. Water displacements in the Pacific and the genesis of El Niño cycles[J]. Journal of Geophysical Research: Oceans, 1985, 90(C4): 7129-7132.
|
[19] |
JIN F F. An equatorial ocean recharge paradigm for ENSO: part I: Conceptual model[J]. Journal of the Atmospheric Sciences, 1997, 54(7): 811-829.
|
[20] |
JIN F F. An equatorial ocean recharge paradigm for ENSO: part II: A stripped-down coupled model[J]. Journal of the Atmospheric Sciences, 1997, 54(7): 830-847.
|
[21] |
ZHANG R H, GAO C, FENG L C. Recent ENSO evolution and its real-time prediction challenges[J]. National Science Review, 2022, 9(4): nwac052.
|
[22] |
CAI W J, WANG G J, SANTOSO A, et al. Increased frequency of extreme La Niña events under greenhouse warming[J]. Nature Climate Change, 2015, 5: 132-137.
|
[23] |
GAO Y P, FAN K, XU Z Q. Causes of the unprecedented month-to-month persistent extreme heat event over South China in early summer 2020: Role of sea surface tempera-ture anomalies in the tropical indo-pacific region[J]. Journal of Geophysical Research: Atmospheres, 2023, 128: e2022JD038422.
|
[24] |
何慧根, 张驰, 吴遥, 等. 重庆夏季高温干旱特征及其对拉尼娜事件的响应[J]. 干旱气象, 2023, 41(6):873-883.
|
|
HE H G, ZHANG C, WU Y, et al. Characteristics of high temperature and drought during summer in Chongqing and its response to La Niña event[J]. Journal of Arid Meteorology, 2023, 41(6): 873-883.
|
[25] |
ZHENG F, YUAN Y, DING Y H, et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic[J]. Advances in Atmos-pheric Sciences, 2022, 39(4): 546-552.
|
[26] |
BIAN Y J, SUN P, ZHANG Q, et al. Amplification of non-stationary drought to heatwave duration and intensity in eastern China: Spatiotemporal pattern and causes[J]. Journal of Hydrology, 2022, 612: 128154.
|
[27] |
ZHENG F, LIU J P, FANG X H, et al. The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 Arctic sea ice loss[J]. Advances in Atmospheric Sciences, 2022, 39(4): 658-672.
|
[28] |
任宏利, 王润, 翟盘茂, 等. 超强厄尔尼诺事件海洋学特征分析与预测回顾[J]. 气象学报, 2017, 75(1):1-18.
|
|
REN H L, WANG R, ZHAI P M, et al. Upper-ocean dynamical features and prediction of the super El Niño in 2015/2016: A comparison with 1982/1983 and 1997/1998[J]. Acta Meteorologica Sinica, 2017, 75(1):1-18.
|
[29] |
JEONG H, PARK H S, CHOWDARY J S, et al. Triple-dip La Niña contributes to Pakistan flooding and Southern China drought in summer 2022[J]. Bulletin of the American Meteorological Society, 2023, 104(9): 1570-1586.
|
[30] |
WANG Z Q, LUO H L, YANG S. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective[J]. Environmental Research Letters, 2023, 18(2): 024023.
|
[31] |
RIPPLE W J, WOLF C, GREGG J W, et al. World scientists’ warning of a climate emergency 2022[J]. BioScience, 2022, 72(12): 1149-1155.
|
[32] |
郑飞, 张小娟, 曹庭伟. 西太平洋暖池海洋热浪在2020—2022三年拉尼娜事件爆发背景下的演变特征、爆发机制及其影响研究[J]. 大气科学, 2024, 48(1):376-390.
|
|
ZHENG F, ZHANG X J, CAO T W. Analysis of evolution characteristics, physical mechanisms, and impacts of marine heat waves in the Western Pacific warm pool under the background of triple-year La Niña from 2020 to 2022[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(1): 376-390.
|
[33] |
FANG X H, ZHENG F, LI K X, et al. Will the historic southeasterly wind over the equatorial Pacific in March 2022 trigger a third-year La Niña event?[J]. Advances in Atmospheric Sciences, 2023, 40(1): 6-13.
|
[34] |
LI X F, HU Z Z, TSENG Y H, et al. A historical perspective of the La Niña event in 2020/2021[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(7): e2021JD035546.
|
[35] |
ZHENG F, FENG L S, ZHU J. An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011[J]. Advance in Atmospheric Sciences, 2015, 32: 731-742.
|
[36] |
JIANG S, ZHU C W, HU Z Z, et al. Triple-dip La Niña in 2020-23: Understanding the role of the annual cycle in tropical Pacific SST[J]. Environmental Research Letters, 2023, 18(8): 084002.
|
[37] |
MASUDA S, AWAJI T, TOYODA T, et al. Temporal evolution of the equatorial thermocline associated with the 1991-2006 ENSO[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): C03015.
|
[38] |
WANG B, WU R G, LUKAS R. Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition[J]. Journal of the Meteorological Society of Japan Ser II, 1999, 77(1): 1-16.
|
[39] |
LI M T, CAO Z Y, GORDON A L, et al. Roles of the Indo-Pacific subsurface Kelvin waves and volume transport in prolonging the triple-dip 2020-2023 La Niña[J]. Environmental Research Letters, 2023, 18: 104043.
|
[40] |
KIM K Y, KIM Y Y. Mechanism of Kelvin and Rossby waves during ENSO events[J]. Meteorology and Atmospheric Physics, 2002, 81(3): 169-189.
|
[41] |
MEINEN C S, MCPHADEN M J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña[J]. Journal of Climate, 2000, 13(20): 3551-3559.
|
[42] |
GENG T, JIA F, CAI W J, et al. Increased occurrences of consecutive La Niña events under global warming[J]. Nature, 2023, 619: 774-781.
|
[43] |
CHEN M N, GAO C, ZHANG R H. How the central-western equatorial Pacific easterly wind in early 2022 affects the third-year La Niña occurrence[J]. Climate Dynamics, 2024, 62(5): 3047-3066.
|
[44] |
GAO C, ZHOU L, ZHANG R H. A transformer-based deep learning model for successful predictions of the 2021 second-year La Niña condition[J]. Geophysical Research Letters, 2023, 50: e2023GL104034.
|
[45] |
高川, 陈茂楠, 周路, 等. 2020-2021年热带太平洋持续性双拉尼娜事件的演变[J]. 中国科学:地球科学, 2022, 52(12): 2353-2372.
|
|
GAO C, CHEN M N, ZHOU L, et al. The 2020-2021 prolonged La Niña evolution in the tropical Pacific[J]. Science China Earth Sciences, 2022, 65(12): 2248-2266.
|
[46] |
HASAN N A, CHIKAMOTO Y, MCPHADEN M J. The influence of tropical basin interactions on the 2020-2022 double-dip La Niña[J]. Frontiers in Climate, 2022, 4: 1001174.
|