海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 2-27.DOI: 10.3969/j.issn.1001-909X.2024.03.001

• 研究综述 • 上一篇    下一篇

人工智能海洋学发展前景

董昌明1,2,3(), 王子韵2, 谢华荣2, 徐广珺4, 韩国庆5, 周书逸6, 谢文鸿7, 沈向宇2, 韩磊8   

  1. 1.南京信息工程大学 天长研究院,江苏 南京 210044
    2.南京信息工程大学 海洋科学学院,江苏 南京 210044
    3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519000
    4.广东海洋大学 电子与信息工程学院,广东 湛江 524088
    5.浙江海洋大学 海洋科学与技术学院,浙江 舟山 316022
    6.清华大学 地球系统科学系,北京 100084
    7.南京星遥科技有限公司,江苏 南京 210012
    8.南京信息工程大学 大气科学学院,江苏 南京 210044
  • 收稿日期:2023-10-08 修回日期:2024-02-23 出版日期:2024-09-15 发布日期:2024-11-25
  • 作者简介:董昌明(1967—),男,安徽省宣城市人,教授,主要从事人工智能海洋学研究,E-mail:cmdong@nuist.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC3008200)

Prospect of artificial intelligence in oceanography

DONG Changming1,2,3(), WANG Ziyun2, XIE Huarong2, XU Guangjun4, HAN Guoqing5, ZHOU Shuyi6, XIE Wenhong7, SHEN Xiangyu2, HAN Lei8   

  1. 1. Tianchang Research Institute, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2. School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
    3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
    4. College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
    5. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
    6. Department of Earth System Science, Tsinghua University, Beijing 100084, China
    7. Nanjing Xingyao Technology Co., LTD., Nanjing 210012, China
    8. School of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2023-10-08 Revised:2024-02-23 Online:2024-09-15 Published:2024-11-25

摘要:

随着海洋观测数据和数值模式产品的爆发式增长,人工智能方法在海洋学研究中展现出巨大的潜能。该文首先回顾了海洋大数据科学的发展历程,并详细介绍了人工智能在海洋现象识别、海洋要素与现象预报、海洋动力参数估算、海洋预报误差订正和海洋动力方程求解中的研究现状。具体地,阐述了海洋涡旋、海洋内波和海冰等海洋现象的智能识别研究,海面温度、厄尔尼诺-南方涛动、风暴潮、海浪和海流的智能预测研究,数值模式中海洋湍流过程参数化方案的智能估算研究以及海浪、海流等海洋现象预报误差的智能订正研究。此外,还讨论了物理机制融合和傅里叶神经算子在海洋运动方程智能求解中的研究进展。该文立足于当前人工智能海洋学的发展现状,旨在全面展示人工智能技术在海洋学领域的优势和潜力,并聚焦于海洋数字孪生和人工智能大模型两个新兴的研究热点,展望未来人工智能海洋学的发展方向,为海洋学者提供启示和参考。

关键词: 海洋, 人工智能, 特征识别, 参数估算, 预报误差订正, 海洋动力方程求解, 海洋数字孪生, 大模型

Abstract:

Artificial intelligence in oceanography has demonstrated a great potential with the explosive growth of ocean observation data and numerical model products. This article first reviews the history of ocean big data development, and then introduces in detail the current status of artificial intelligence in oceanography applications including identifying ocean phenomenon, forecasting ocean variables and phenomenon, estimating dynamic parameters, correcting forecast errors, and solving dynamic equations. Specifically, this article elaborates the research on the intelligent identification of ocean eddies, internal waves and sea ice, the intelligent prediction of sea surface temperatures, El Ni?o-Southern Oscillation, storm surges, waves and currents, the intelligent estimation of ocean turbulence parameterization for numerical models, and the intelligent correction of waves and current forecast errors. In addition, it discusses the recent progress of applying physical mechanism fusion and Fourier neural operator for solving ocean dynamic equations. This article is based on the current status of artificial intelligence in oceanography and aims to provide a comprehensive demonstration of the advantages and potential of applying artificial intelligence methods in the field of oceanography. With the two emerging research hotspots: digital twin oceans and artificial intelligence large models, the future development direction of artificial intelligence provides enlightenment and reference for interested scientists and researchers.

Key words: oceanography, artificial intelligence, feature identification, parameter estimation, prediction error correction, solution of ocean dynamic equation, digital twin oceans, large models

中图分类号: