海洋学研究 ›› 2024, Vol. 42 ›› Issue (2): 26-39.DOI: 10.3969/j.issn.1001-909X.2024.02.003
康正武1,2, 涂乾光3, 闫运伟4, 邢小罡1,2
收稿日期:
2023-05-23
修回日期:
2023-08-22
出版日期:
2024-06-15
发布日期:
2024-08-09
作者简介:
康正武(1997—),男,内蒙古自治区巴彦淖尔市人,主要从事海-气相互作用方面的研究,E-mail: k786843354@163.com。
基金资助:
KANG Zhengwu1,2, TU Qianguang3, YAN Yunwei4, XING Xiaogang1,2
Received:
2023-05-23
Revised:
2023-08-22
Online:
2024-06-15
Published:
2024-08-09
摘要:
海面温度(sea surface temperature, SST)是海洋和气象研究中的关键气候变量,广泛应用于海-气相互作用、海洋混合、边界层过程及海洋状态预报等领域。欧洲静止气象卫星Meteosat-8/SEVIRI(M8)提供的逐小时SST数据是上述工作的重要数据源,但其误差的时空变化尚不明确。为评估M8卫星SST数据的可靠性和适用性,利用实测SST质量监测平台(iQuam)提供的船只、漂流浮标和Argo浮标的SST数据,对M8卫星在印度洋区域的逐小时SST数据进行了验证。结果显示,M8卫星与三种实测数据的平均偏差为-0.06~-0.10 ℃,均方根误差为0.48~1.03 ℃,决定系数为0.96~0.99。其中,漂流浮标与M8卫星的匹配数据量最大、覆盖最广,因此漂流浮标是理想的验证数据源。分析M8卫星SST数据偏差的时空分布发现:在阿拉伯海西北部和孟加拉湾西北部夜间存在0.6 ℃的负偏差,在该海域白天的负偏差更大,而在40°S—60°S部分海域白天则出现了超过1.0 ℃的负偏差;M8卫星SST在夏季较易出现正偏差的极大值,在春、夏转换季则存在极小负偏差。
中图分类号:
康正武, 涂乾光, 闫运伟, 邢小罡. 印度洋静止气象卫星Meteosat-8/SEVIRI海面温度验证[J]. 海洋学研究, 2024, 42(2): 26-39.
KANG Zhengwu, TU Qianguang, YAN Yunwei, XING Xiaogang. Validation of sea surface temperature from the geostationary meteorological satellite Meteosat-8/SEVIRI over the Indian Ocean[J]. Journal of Marine Sciences, 2024, 42(2): 26-39.
图2 M8卫星与三种实测数据的海面温度(a)、纬度(b)和经度(c)匹配情况分布直方图 (海面温度分组间隔为1 ℃,纬度和经度分组间隔为3°,直方图归一化积分为1。)
Fig.2 Histograms of SST (a), latitude (b) and longitude (c) distributions for paired M8 and three in-situ platforms (Grouped by 1 ℃ for SST and 3° for latitude and longitude,histograms normalized to a sum of 1.)
图3 M8卫星与三种实测数据匹配量的月平均变化(a, c, e)与小时平均变化(b, d, f)
Fig.3 Monthly mean variation (a, c, e) and hourly mean variation (b, d, f) of matching amount between M8 and three in-situ platforms
实测平台 | 匹配量/组 | 平均偏差/℃ | 均方根误差/℃ | 决定系数 |
---|---|---|---|---|
船只 | 124 089 | -0.10 | 1.03 | 0.96 |
漂流浮标 | 1 208 438 | -0.06 | 0.48 | 0.99 |
Argo浮标 | 8 067 | -0.10 | 0.53 | 0.99 |
表1 M8卫星与三种实测海面温度数据的误差统计表
Tab.1 Statistical table of SST errors between M8 and three in-situ platforms
实测平台 | 匹配量/组 | 平均偏差/℃ | 均方根误差/℃ | 决定系数 |
---|---|---|---|---|
船只 | 124 089 | -0.10 | 1.03 | 0.96 |
漂流浮标 | 1 208 438 | -0.06 | 0.48 | 0.99 |
Argo浮标 | 8 067 | -0.10 | 0.53 | 0.99 |
图5 M8卫星与三种实测海面温度数据的平均偏差及均方根误差的空间分布
Fig.5 Spatial distribution map of average deviation and root mean square error of SST between M8 and three in-situ platforms
图6 M8卫星与三种实测海面温度数据的月份与小时平均偏差和均方根误差统计
Fig.6 Statistical graphs of monthly and hourly mean deviation and root mean square error of SST between M8 and three in-situ platforms
时段 | 匹配量/组 | 平均偏差/℃ | 偏差中位数/℃ | 均方根误差/℃ | 鲁棒标准差/℃ |
---|---|---|---|---|---|
夜间 | 470 166 | -0.08 | -0.05 | 0.47 | 0.41 |
白天 | 566 952 | -0.04 | 0.00 | 0.48 | 0.40 |
表2 M8卫星与漂流浮标夜间和白天海面温度误差统计
Tab.2 Statistics of SST errors between M8 and drifting buoys for night and day
时段 | 匹配量/组 | 平均偏差/℃ | 偏差中位数/℃ | 均方根误差/℃ | 鲁棒标准差/℃ |
---|---|---|---|---|---|
夜间 | 470 166 | -0.08 | -0.05 | 0.47 | 0.41 |
白天 | 566 952 | -0.04 | 0.00 | 0.48 | 0.40 |
图7 M8卫星与漂流浮标数据在夜间和白天的匹配量、偏差中位数及鲁棒标准差的空间分布
Fig.7 Spatial distribution of matched number, deviation median, and Robust standard deviation of SST between M8 and drifting buoys during night and day
图9 M8卫星与漂流浮标海面温度间的平均偏差、均方根误差和匹配数据占比分别随实测海面温度、卫星天顶角正割值、经度和纬度的变化
Fig.9 Variations in mean deviation, root mean square error and percentage of matched pairs between M8 and drifting buoys as functions of measured SST, secant of satellite zenith angle, longitude and latitude
[1] | MERCHANT C J, MINNETT P J, BEGGS H, et al. Global sea surface temperature[M]//Taking the temperature of the earth. Amsterdam: Elsevier, 2019: 5-55. |
[2] | 靳光强. 海水温度相似预报方法研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
JIN G Q. Research and realization of analogue prediction method for seawater temperature[D]. Harbin: Harbin Engineering University, 2018. | |
[3] | 罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报:自然科学版, 2012, 42(10):19-25. |
LUO X F, WEI H, YUAN C Y. Inter-annual and decadal variations of sea surface temperature in the Yellow Sea by satellite data[J]. Periodical of Ocean University of China, 2012, 42(10): 19-25. | |
[4] | VAN SCOY K A, MORRIS K P, ROBERTSON J E, et al. Thermal skin effect and the air-sea flux of carbon dioxide: A seasonal high-resolution estimate[J]. Global Biogeochemical Cycles, 1995, 9(2): 253-262. |
[5] | BELL M J, FORBES R M, HINES A. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting[J]. Journal of Marine Systems, 2000, 25(1): 1-22. |
[6] | MARTIN M J, HINES A, BELL M J. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 981-995. |
[7] | BENTAMY A, PIOLLÉ J F, GROUAZEL A, et al. Review and assessment of latent and sensible heat flux accuracy over the global oceans[J]. Remote Sensing of Environment, 2017, 201: 196-218. |
[8] | DONLON C J, MARTIN M, STARK J, et al. The operational sea surface temperature and sea ice analysis (OSTIA) system[J]. Remote Sensing of Environment, 2012, 116: 140-158. |
[9] | WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25(7): 823-842. |
[10] | TAYLOR P K, KENT E C. The accuracy of meteorological observations from voluntary observing ships: Present status and future requirements[R]. Marine Physics and Ocean Climate, 1999. https://eprints.soton.ac.uk/347754/. |
[11] | KEARNS E J, HANAFIN J A, EVANS R H, et al. An independent assessment of pathfinder AVHRR sea surface temperature accuracy using the marine atmosphere emitted radiance interferometer (MAERI)[J]. Bulletin of the American Meteorological Society, 2000, 81(7): 1525-1536. |
[12] | KUMAR A, MINNETT P, PODESTÁ G, et al. Analysis of Pathfinder SST algorithm for global and regional conditions[J]. Journal of Earth System Science, 2000, 109(4): 395-405. |
[13] | KILPATRICK K A, PODESTÁ G P, EVANS R. Overview of the NOAA/NASA advanced very high resolution radio-meter Pathfinder algorithm for sea surface temperature and associated matchup database[J]. Journal of Geophysical Research: Oceans, 2001, 106(C5): 9179-9197. |
[14] | CORLETT G K, BARTON I J, DONLON C J, et al. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets[J]. Advances in Space Research, 2006, 37(4): 764-769. |
[15] | 管磊, 陈锐, 贺明霞. ERS-1/ATSR海表温度在热带太平洋和西北太平洋的印证与分析[J]. 遥感学报, 2002, 6(1):63-69. |
GUAN L, CHEN R, HE M X. Validation of sea surface temperature from ERS-1/ATSR in the tropical and northwest Pacific[J]. Journal of Remote Sensing, 2002, 6(1): 63-69. | |
[16] | 范海燕, 滕军, 管磊, 等. NOAA/AVHRR卫星海表温度在西北太平洋的印证及分析[J]. 海洋预报, 2009, 26(2):7-14. |
FAN H Y, TENG J, GUAN L, et al. Validation of sea surface temperature from NOAA/AVHRR in the Northwest Pacific[J]. Marine Forecasts, 2009, 26(2): 7-14. | |
[17] | MATURI E, HARRIS A, MERCHANT C, et al. NOAA’s sea surface temperature products from operational geostationary satellites[J]. Bulletin of the American Meteorological Society, 2008, 89(12): 1877-1888. |
[18] | SCHMETZ J, PILI P, TJEMKES S, et al. An introduction to meteosat second generation (MSG)[J]. Bulletin of the American Meteorological Society, 2002, 83(7): 977-992. |
[19] | WOO H J, PARK K A, LI X F, et al. Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: Validation and error assessment[J]. Remote Sensing, 2018, 10(12): 1916. |
[20] | YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658. |
[21] | 王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验[J]. 应用气象学报, 2020, 31(6):729-739. |
WANG S J, CUI P, ZHANG P, et al. FY-3C/VIRR sea surface temperature products and quality validation[J]. Journal of Applied Meteorological Science, 2020, 31(6): 729-739. | |
[22] | 张贝贝. 环境星热红外影像海表温度反演及真实性检验[D]. 太原: 太原理工大学, 2022. |
ZHANG B B. Inversion and validation of HJ thermal infrared image sea surface temperature[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
[23] | HUANG B Y, THORNE P W, BANZON V F, et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20): 8179-8205. |
[24] | 门聪. 海洋一号B卫星海洋水色扫描仪(HY-1B/COCTS)海表温度反演与印证[D]. 青岛: 中国海洋大学, 2013. |
MEN C. Retrieval and validation of sea surface temperature from HY-1B/COCTS[D]. Qingdao: Ocean University of China, 2013. | |
[25] | LUO B K, MINNETT P J. Skin sea surface temperatures from the GOES-16 ABI validated with those of the shipborne M-AERI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 9902-9913. |
[26] | TU Q G, HAO Z Z. Validation of sea surface temperature derived from Himawari-8 by JAXA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 448-459. |
[27] | LE BORGNE P, LEGENDRE G, PÉRÉ S. Comparison of MSG/SEVIRI and drifting buoy derived diurnal warming estimates[J]. Remote Sensing of Environment, 2012, 124: 622-626. |
[28] | EMERY W J, BALDWIN D J, SCHLÜSSEL P, et al. Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements[J]. Journal of Geophysical Research: Oceans, 2001, 106(C2): 2387-2405. |
[29] | 李凝慧, 管磊. 西太平洋东印度洋Suomi-NPP/VIIRS海表温度印证[J]. 中国海洋大学学报:自然科学版, 2021, 51(8):115-122. |
LI N H, GUAN L. Validation of Suomi-NPP/VIIRS sea surface temperature in the western Pacific Ocean and eastern Indian Ocean[J]. Periodical of Ocean University of China, 2021, 51(8): 115-122. | |
[30] | XU F, IGNATOV A. Error characterization in iQuam SSTs using triple collocations with satellite measurements[J]. Geophysical Research Letters, 2016, 43(20): 10826-10834. |
[31] | MCCLAIN E P, PICHEL W G, WALTON C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587-11601. |
[32] | WALTON C C, PICHEL W G, SAPPER J F, et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27999-28012. |
[33] | NANO-ASCIONE N, PICART S S. Scientific validation report for the geostationary satellite sea surface temperature[R]. EUMETSAT, 2023. |
[34] | 毛志华, 张贤良, 刘建强, 等. HY1C/1D海表温度对Terra/Aqua产品的可替代性分析[J]. 海洋学报, 2023, 45(3):97-112. |
MAO Z H, ZHANG X L, LIU J Q, et al. Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua[J]. Haiyang Xuebao, 2023, 45(3): 97-112. |
[1] | 揭天愚, 周建平, 陶春辉, 王汉闯, 李倩宇, 吴涛, 刘隆. 西南印度洋中脊热液区岩石声学特性[J]. 海洋学研究, 2024, 42(1): 1-12. |
[2] | 宋晚郊, 张鹏, 孙凌, 唐世浩, 周芳成, . 基于DINEOF的风云极轨气象卫星海表温度重构方法研究[J]. 海洋学研究, 2022, 40(2): 10-18. |
[3] | 徐浩波, 管清胜, 许明珠, 刁云云, . 蛇纹岩化作用对超慢速洋中脊拆离断层发育的影响[J]. 海洋学研究, 2021, 39(3): 21-30. |
[4] | 蒋锦刚, 冯慧云, 张亚国, 何贤强. 空间变异对海洋叶绿素a质量浓度遥感产品精度验证的影响[J]. 海洋学研究, 2021, 39(1): 9-19. |
[5] | 吴寿常, 何海伦, 陈美香, 王渊, 蔺飞龙. 基于WOA18数据集的印度洋等密度面年代际变化研究[J]. 海洋学研究, 2020, 38(4): 26-39. |
[6] | 蒙泽, 周磊, 秦箭煌, 付红丽, 王关锁. 海洋再分析数据集中印度洋季节内信号的评估[J]. 海洋学研究, 2019, 37(4): 1-13. |
[7] | 杨驰, 韩喜球, 王叶剑, 李洪林, 邱中炎, 吴招才. 卡尔斯伯格脊 60°~61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示[J]. 海洋学研究, 2018, 36(3): 37-49. |
[8] | 方玥炜, 唐佑民, 李俊德, 刘婷. 几种统计模型对热带印度洋海温异常的预报[J]. 海洋学研究, 2018, 36(1): 1-15. |
[9] | 张东凌, 卢姁, 张铭. 春季Wyrtki急流异常及其与亚洲热带夏季风的关系[J]. 海洋学研究, 2018, 36(1): 16-26. |
[10] | 杨娟, 吕靖, 张荣欣, 苏新, 孙栋. 2013年夏季西南印度洋表层浮游动物群落分布格局[J]. 海洋学研究, 2017, 35(3): 54-66. |
[11] | 陈小丹, 梁楚进, 董昌明. 西南印度洋龙方斤热液区羽流信号的检测与通量估算[J]. 海洋学研究, 2015, 33(4): 43-52. |
[12] | 谢尚微, 杨俊毅, 张东声, 王春生. 西南印度洋真光层海水中固氮细菌多样性[J]. 海洋学研究, 2015, 33(3): 54-61. |
[13] | 曹维, 仵彦卿, 唐德富, 杨耀芳, 沈继平, 费岳军. 象山港海域海洋环境监测站位优化及验证分析[J]. 海洋学研究, 2014, 32(4): 50-57. |
[14] | 王振波, 武光海, 韩沉花. 西南印度洋脊49.6°E热液区热液产物和玄武岩地球化学特征[J]. 海洋学研究, 2014, 32(1): 64-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||